精英家教网 > 高中数学 > 题目详情
20.已知随机变量ξ的分布列如表,则ξ的标准差等于$\sqrt{3.56}$.
ξ135
p0.40.1x

分析 先利用期望公式,求得Eξ=3.2,再利用方差公式,求得方差,进而可得ξ的标准差.

解答 解:由题意,Eξ=1×0.4+3×0.1+5×(1-0.4-0.1)=3.2
∴方差为:(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=1.936+0.004+1.62=3.56
∴ξ的标准差为$\sqrt{3.56}$,
故答案为:$\sqrt{3.56}$

点评 本题考查知识点是随机变量ξ的期望、方差与标准差,正确运用公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某公园引进了两种植物品种甲与乙,株数分别为12和8,这20株植物的株高数据如下(单位:cm):
甲:162  168  171  175  166  176  178  173 191 194 187 171
乙:155  156  162  158  159  177  168  178
若这两种植物株高在175cm以上(包括175cm)定义为“优良品种”,株高在175cm以下(不包括175cm)定义为“非优良品种'.
(Ⅰ)画出这两组数据的茎叶图;
(Ⅱ)求甲品种的中位数和平均数;
(Ⅲ)在以上20株植物中,如果用分层抽样的方法从”优良品种“和”非优良品种“中抽取5株,再从这5株中选2株,那么至少有一株是”优良品种“的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个骰子的6个面上分别标有1,2,3,4,5,6,现抛掷3个这样质地均匀的骰子.
(1)求抛掷出的这三个骰子的点数之积是3的倍数的概率?
(2)设X为3个骰子中点数为3的倍数个数,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.判断下列四个命题:
①若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$∥$\overrightarrow{b}$;
④若$\overrightarrow{a}$=$\overrightarrow{b}$,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sin(α-$\frac{π}{5}$)=a(a≠±1,a≠0),求cos(α+$\frac{14π}{5}$)tan(α-$\frac{11π}{5}$)+$\frac{tan(α+\frac{9π}{5})}{cos(\frac{26π}{5}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,PA=AB=AC=1,
∠BAC=∠BAP=120°.
(1)求证:AB⊥PC;
(2)若E为BC的中点,求直线PE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$,g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,某大风车的半径为2米,每12秒沿逆时针方向匀速旋转一周,它的最低点O离地面1米.风车圆周上一点A从最低点O开始,运动t秒后与地面距离为h米.
(1)直接写出函数h=f(t)的关系式,并在给出的坐标系中用五点作图法作出h=f(t)在[0,12)上的图象(要列表,描点);
(2)A从最低点O开始,沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=2PA=2AB=2BC=2.
(Ⅰ)求三棱锥P-ACD的外接球的体积;
(Ⅱ)求二面角B-PC-A与二面角A-PC-D的正弦值之比.

查看答案和解析>>

同步练习册答案