精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=
3
2
,an+1=an2-an+1.
(1)求证:
1
an
=
1
an-1
-
1
an+1-1

(2)设Sn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,n>2,证明:Sn<2.
考点:数列递推式,数列的求和
专题:点列、递归数列与数学归纳法
分析:(1)把数列递推式变形,取倒数后整理得答案;
(2)由(1)中的结论把
1
an
列项,得到Sn=2-
1
an+1-1
,由已知条件a1=
3
2
,an+1=an2-an+1得到
an+1>an>1,从而证得Sn<2.
解答: 证明:(1)∵an+1=an2-an+1=an(an-1)+1,
∴an+1-1=an(an-1),
1
an+1-1
=
1
an(an-1)
=
1
an-1
-
1
an

1
an
=
1
an-1
-
1
an+1-1

(2)由(1)知,
1
an
=
1
an-1
-
1
an+1-1

∴Sn=
1
a1
+
1
a2
+
1
a3
+…+
1
an

=(
1
a1-1
-
1
a2-1
)+(
1
a2-1
-
1
a3-1
)+…+(
1
an-1
-
1
an+1
)

=
1
a1-1
+
1
an+1-1
=2-
1
an+1-1

∵an+1=an2-an+1=(an-1)2≥0,且a1=
3
2
>1

∴an+1>an>1,
2-
1
an+1-1
<2

即Sn<2.
点评:本题考查了数列递推式,考查了裂项相消法求数列的和,训练了利用放缩法证明不等式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,BC=2,角B=
π
3
,当△ABC的面积等于
3
2
时,sinC=(  )
A、
3
2
B、
1
2
C、
3
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(  )
A、
5
B、5
C、25
D、
10

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有标号为1,2,3,4的4张标签,随机地选取两张标签,根据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的;
(2)标签的选取是有放回的.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xa•lnx,其中a∈Z.
(1)讨论函数f(x)的单调性;
(2)当a=-1时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A为锐角sinA=
3
5
,tan(A-B)=-
1
2

(1)求tanA及cos2A的值  
(2)求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx+
1
x
-a,(a∈R).
(1)当a>0时,求函数f(x)的单调区间;
(2)在(1)中,若函数f(x)的最小值恒小于ek+1,求实数k的取值范围;
(3)当a<0时,设x1>0,x2>0,且x1≠x2,试比较f(
x1+x2
2
)与
f(x1)+f(x2)
2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列:
1
1
2
1
1
2
3
1
2
2
1
3
4
1
3
2
2
3
1
4
,…,依它的前10项的规律,这个数列的第2014项a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-4x+a,g(x)=logax(a>0且a≠1).
(Ⅰ)若函数f(x)在[-1,2m]上不具有单调性,求实数m的取值范围;
(Ⅱ)若f(1)=g(1).
  (ⅰ)求实数a的值;
  (ⅱ)设t1=
1
2
f(x)
,t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.

查看答案和解析>>

同步练习册答案