精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xa•lnx,其中a∈Z.
(1)讨论函数f(x)的单调性;
(2)当a=-1时,求函数f(x)的最大值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由已知条件推导出f'(x)=xa-1•(alnx+1),x>0,xa-1>0.再由a的取值范围分类讨论,能判断出
函数f(x)的单调性.
(2)当a=-1时,f'(x)=x-2•(1-lnx).令f'(x)=0,得x=e.列表讨论能求出函数f(x)的最大值.
解答: 解:(1)∵f(x)=xa•lnx,
∴f'(x)=xa-1•(alnx+1),x>0,xa-1>0.
当a>0时,令f'(x)>0,得x>e-
1
a

∴f(x)的单增区间为(e-
1
a
,+∞)

同理,单减区间为(0,e-
1
a
)

当a=0时,f′(x)=
1
x
>0
,∴f(x)在(0,+∞)上单增;
当a<0时,令f'(x)>0,得x<e-
1
a

∴f(x)的单增区间为(0,e-
1
a
)

同理,单减区间为(e-
1
a
,+∞)
.(8分)
(2)当a=-1时,f(x)=x-1•lnx,
f'(x)=x-2•(1-lnx).令f'(x)=0,得x=e.
列表如下:
x (0,e) e (e,+∞)
f’(x) + 0 -
f(x) 极大值
f(x)max=f(e)=
1
e
.(12分)
点评:本题考查函数的单调性的判断,考查函数的最大值的求法,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

利用回归分析的方法研究两个具有线性相关关系的变量时,下列说法中表述错误的是(  )
A、相关系数r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大,|r|越接近0,变量间的相关程度越小
B、可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好
C、如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样的带状区域越窄,回归方程的预报精度越高
D、不能期望回归方程得到的预报值就是预报变量的精确值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前3项分别为4、6、x,则x为  (  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A+B=
5
4
π,且A,B≠kπ+
π
2
(k∈Z),求证:(1+tanA)(1+tanB)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x,
(1)求f(x)的单调区间;
(2)求f(x)在区间[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
3
2
,an+1=an2-an+1.
(1)求证:
1
an
=
1
an-1
-
1
an+1-1

(2)设Sn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,n>2,证明:Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠B=45°,AC=
10
,cosC=
2
5
5

(1)求AB
(2)求sinA和BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的表面积为am2,且它的侧面展开图是一个半圆,求这个圆锥的底面直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

设(5x-
x
n的展开式的各项系数之和为M,二项式系数之和为N,M-N=240,求展开式中x3项的系数.

查看答案和解析>>

同步练习册答案