精英家教网 > 高中数学 > 题目详情
2.已知{an}满足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),Sn=a1+4a2+42a3+…+4n-1an,则5Sn-4nan=(  )
A.n-1B.nC.2nD.n2

分析 an+an+1=($\frac{1}{4}$)n(n∈N*),变形为:an+1-$\frac{4}{5}(\frac{1}{4})^{n+1}$=-$[{a}_{n}-\frac{4}{5}(\frac{1}{4})^{n}]$,利用等比数列通项公式即可得出.

解答 解:∵an+an+1=($\frac{1}{4}$)n(n∈N*),
∴an+1-$\frac{4}{5}(\frac{1}{4})^{n+1}$=-$[{a}_{n}-\frac{4}{5}(\frac{1}{4})^{n}]$,
∴数列$\{{a}_{n}-\frac{4}{5}(\frac{1}{4})^{n}\}$是等比数列,首项为$\frac{4}{5}$,公比为-1.
∴an=$\frac{4}{5}(\frac{1}{4})^{n}$+$\frac{4}{5}$×(-1)n-1
4n-1an=$\frac{1}{5}$+(-1)n-1×$\frac{1}{5}$×4n
4nan=$\frac{4}{5}$+(-1)n-1×$\frac{{4}^{n+1}}{5}$.
∴5Sn=n-$\frac{-4[1-(-4)^{n}]}{1-(-4)}$=n+$\frac{4}{5}$-$\frac{(-4)^{n}}{5}$.
∴5Sn-4nan=n.
故选:B.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(6,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.80B.160C.4$\sqrt{5}$D.4$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题错误的是(  )
A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”
B.若命题p:?x0∈R,x0+1≤0,则¬p:?x∈R,x+1>0
C.△ABC中,sinA>sinB是A>B的充要条件
D.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$x2-(a+1)x+alnx(a∈R).
(1)当a=$\frac{1}{2}$,求y=f(x)的单调区间;
(2)讨论函数y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知某超市购进一批冰箱,这些冰箱60%来自上海,40%来自广州,上海冰箱的合格率为90%,广州冰箱的合格率为80%.若用A1、A2分别表示来自上海、广州的冰箱,B表示冰箱为合格品,试求:P(A1)、P(A2)、P(B|A1)、P($\overline{B}$|A2)各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x3-3ax+b的单调递减区间为(-1,1),其极小值为2,则f(x)的极大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的边AB长为4,若BC边上的中线为定长3,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.为推广漳州“三宝”,某商场推出“砸金蛋”促销活动,单笔购满50元可以玩一次“砸金蛋”游戏,每次游戏可以砸两个金蛋,每砸一个金蛋可以等可能地得到“水仙花卡片”,“片仔癀卡片”和“八宝印泥卡片”中的一张,如果一次游戏中可以得到相同的卡片,那么该商场赠送一份奖品,则玩一次该游戏可以获赠一份奖品的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若椭圆的方程$\frac{x^2}{10-a}+\frac{y^2}{a-2}$=1,且此椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,则实数a=$\frac{14}{3}$或$\frac{22}{3}$.

查看答案和解析>>

同步练习册答案