精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5π}{3}$)=-$\frac{6}{5}$,f(5β-$\frac{5π}{6}$)=$\frac{16}{17}$,求cos(α-β)的值.

分析 (1)直接利用周期公式求得周期;
(2)由(1)得到函数解析式,再由f(5α+$\frac{5π}{3}$)=-$\frac{6}{5}$,f(5β-$\frac{5π}{6}$)=$\frac{16}{17}$分别求出sinα,cosβ,利用平方关系求出cosα,sinβ,代入两角差的余弦得答案.

解答 解:(1)∵f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期为10π,
∴$T=\frac{2π}{ω}=10π$,解得ω=$\frac{1}{5}$;
(2)f(x)=2cos($\frac{1}{5}$x+$\frac{π}{6}$),
由f(5α+$\frac{5π}{3}$)=-$\frac{6}{5}$,得2cos($α+\frac{π}{3}+\frac{π}{6}$)=-$\frac{6}{5}$,
∴cos($α+\frac{π}{2}$)=$-\frac{3}{5}$,即sin$α=\frac{3}{5}$,则cosα=$\sqrt{1-(\frac{3}{5})^{2}}=\frac{4}{5}$;
由f(5β-$\frac{5π}{6}$)=$\frac{16}{17}$,得2coc($β-\frac{π}{6}+\frac{π}{6}$)=$\frac{16}{17}$,
∴cosβ=$\frac{8}{17}$,则sinβ=$\sqrt{1-(\frac{8}{17})^{2}}=\frac{15}{17}$.
则cos(α-β)=cosαcosβ+sinαsinβ=$\frac{4}{5}×\frac{8}{17}+\frac{3}{5}×\frac{15}{17}$=$\frac{77}{85}$.

点评 本题考查余弦函数的图象和性质,考查了两角和与差的余弦,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设计一个程序,输人一个三位自然数,把这个数的百位数字与个位数字对调,输出对调后的数,(用“\”表示m除以n的商的整数部分,如$\frac{32}{10}=3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,对于任意点M,点M关于A点的对称点为S,点S关于B点的对称点为N.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{MN}$;
(2)用|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{MN}$|∈[2$\sqrt{3}$,2$\sqrt{7}$],求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖.等于6或5则中二等奖,等于4则中三等奖,其余结果为不中奖.
(1)求中二等奖的概率;
(2)求不中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数的奇偶性
(1)f(x)=cos($\frac{1}{2}$x-$\frac{3π}{2}$);
(2)f(x)=|sinx|+cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等比数列{an}中,a6=$\frac{7}{32}$,q=$\frac{1}{2}$,求a3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与直线y=2x无交点,则离心率e的取值范围是(  )
A.(1,2)B.(1,2]C.(1,$\sqrt{5}$)D.(1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1、F2是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点,P为直线$x=-\frac{4}{3}a$上一点,△F1PF2是底角为30°的等腰三角形,则此椭圆C的离心率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinα=$\frac{3}{5},cosα=-\frac{4}{5}$,则角α的终边在第二象限.

查看答案和解析>>

同步练习册答案