精英家教网 > 高中数学 > 题目详情

【题目】若椭圆的离心率等于,抛物线的焦点在椭圆的顶点上.

1)求抛物线的方程;

2)若过的直线与抛物线交于两点,又过作抛物线的切线,当时,求直线的方程.

【答案】1;(2.

【解析】

1)由椭圆的离心率的公式和椭圆中的关系,可以求出的值,最后可以求出抛物线的方程;

2)设出直线的方程,设出两点坐标,把抛物线方程变成函数解析式形式,对函数进行求导,求出过的抛物线的切线的斜率,将直线的方程与抛物线方程联立,消,得到一个关于的一元二次方程,利用根与系数关系,结合两直线垂直它们的斜率的关系进行求解即可.

1)已知椭圆的长半轴长为,半焦距

由离心率

椭圆的上顶点为,即抛物线的焦点为

因此,抛物线的方程为

2)由题知直线的斜率存在且不为零,

则可设直线的方程为

抛物线的函数解析式为,求导得切线的斜率分别为

时,,即

,得

,解得.

,得.

因此,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

中,成立的充要条件;

②当时,有

③已知 是等差数列的前n项和,若,则

④若函数上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

(1)讨论函数的单调性,并写出相应的单调区间;

(2)已知,若对任意都成立,求的最大值;

(3)设,若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于4570之间.将数据分成以下5组:第1,第2,第3,第4,第5,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第345组中随机抽取6名学生,则第345组抽取的学生人数依次为(

A.456B.321C.245D.213

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念,贵阳一中“保护饮用水源地”课题研究小组的同学们对红枫湖、百花湖、阿哈水库、花溪水库、北郊水库5处水源地进行了样本采集并送环保部门进行水质检测.已知5处水源地中有1处被某污染物污染,需要通过检测水源样本来确定被污染的水源地现有三个检測方案:

方案甲:对5个样本逐个检测,直到能确定被污染的水源地为止.

方案乙:先任取1个样本进行检测,若检测到污染物,则检测结束;若未检测到污染物,则在剩余4个样本中任取2个,并将这2个样本取部分混合在一起检测,若检测到污染物,则再在这2个样本中任取一个检测,否则在剩余2个未检测样本中任取一个检测.

方案丙:先任取2个样本,并将这2个样本取部分混合在一起检测,若检测到污染物,则再在这2个样本中任取一个检测;若未检测到污染物,则对剩余3个未检测样本进行逐个检测,直到能确定被污染的水源地为止.假设随机变量分别表示用方案甲、方案乙、方案丙进行检测所需的检测次数.

1)求能取到的最大值和其对应的概率;

2)求的期望假设每次检测的费用都相同,请从经济角度说明方案乙和方案丙哪一个更适合?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,PA平面ABCD,菱形ABCD的边长为2,且,点EF分别是PACD的中点,

1)求证:EF平面PBC

2)若PC与平面ABCD所成角的大小为,求C到平面PBD的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏棋盘上标有第站,棋子开始位于第站,选手抛掷均匀骰子进行游戏,若掷出骰子向上的点数不大于,棋子向前跳出一站;否则,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.

1)当游戏开始时,若抛掷均匀骰子次后,求棋子所走站数之和的分布列与数学期望;

2)证明:

3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,若存在一次函数,使得对于任意的,都有恒成立,则称函数上的弱渐进函数.下列结论正确的是______.(写出所有正确命题的序号)

上的弱渐进函数;

上的弱渐进函数;

上的弱渐进函数;

上的弱渐进函数.

查看答案和解析>>

同步练习册答案