【题目】函数的定义域为,若存在一次函数,使得对于任意的,都有恒成立,则称函数在上的弱渐进函数.下列结论正确的是______.(写出所有正确命题的序号)
①是在上的弱渐进函数;
②是在上的弱渐进函数;
③是在上的弱渐进函数;
④是在上的弱渐进函数.
科目:高中数学 来源: 题型:
【题目】若椭圆的离心率等于,抛物线的焦点在椭圆的顶点上.
(1)求抛物线的方程;
(2)若过的直线与抛物线交于、两点,又过、作抛物线的切线、,当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中E,F在边上,G,H在圆弧上.设,矩形的面积为S.
(1)求矩形的面积S关于变量的函数关系式;
(2)求为何值时,矩形的面积S最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且, .
求证:(1)直线DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某果园种植“糖心苹果”已有十余年,为了提高利润,该果园每年投入一定的资金,对种植采摘包装宣传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额(单位:万元)与年利润增量(单位:万元)的散点图:
该果园为了预测2019年投资金额为20万元时的年利润增量,建立了关于的两个回归模型;
模型①:由最小二乘公式可求得与的线性回归方程:;
模型②:由图中样本点的分布,可以认为样本点集中在曲线:的附近,对投资金额做交换,令,则,且有,,,.
(1)根据所给的统计量,求模型②中关于的回归方程;
(2)分别利用这两个回归模型,预测投资金额为20万元时的年利润增量(结果保留两位小数);
(3)根据下列表格中的数据,比较两种模型的相关指数,并说明谁的预测值精度更高更可靠.
回归模型 | 模型① | 模型② |
回归方程 | ||
102.28 | 36.19 |
附:样本的最小乘估计公式为,;
相关指数.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是一个半圆柱与多面体构成的几何体,平面与半圆柱的下底面共面,且, 为弧上(不与重合)的动点.
(1)证明: 平面;
(2)若四边形为正方形,且, ,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形且侧棱垂直与底面的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,.
(1)证明:直线平面;
(2)已知,且三棱锥A-A1B1D1的体积,求该组合体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com