精英家教网 > 高中数学 > 题目详情
9.在平行四边形ABCD 中,AC与BD 交于点O,E 是线段 OD的中点,AE的延长线与CD 交于点F.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$(  )
A.$\frac{3}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow{b}$B.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}\overrightarrow{b}$C.$\frac{1}{4}\overrightarrow{a}$+$\frac{3}{4}\overrightarrow{b}$D.$\frac{2}{3}\overrightarrow{a}$+$\frac{1}{3}\overrightarrow{b}$

分析 根据△DEF∽△BEA得对应边成比例,得到DF与FC之比,做FG平行BD交AC于点G,使用已知向量表示出要求的向量,即可得出结论.

解答 解:∵△DEF∽△BEA,
∴DF:BA═DE:BE=1:3;
作FG平行BD交AC于点G,
∴FG:DO=2:3,CG:CO=2:3,
∴$\stackrel{→}{GF}$=$\frac{1}{3}$$\stackrel{→}{b}$,
∵$\stackrel{→}{AG}$=$\stackrel{→}{AO}$+$\stackrel{→}{OG}$=$\frac{2}{3}$$\stackrel{→}{AC}$=$\frac{2}{3}$$\stackrel{→}{a}$,
∴$\stackrel{→}{AF}$=$\stackrel{→}{AG}$+$\stackrel{→}{GF}$=$\frac{2}{3}$$\stackrel{→}{a}$+$\frac{1}{3}$$\stackrel{→}{b}$,
故选:D.

点评 本题考查向量的线性运算及其几何意义,考查学生的计算能力,灵活运用题目的条件是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1、S2、S3、S4、…、Sn
①当n=2010时,求S1+S2+S3+S4+S5+…+S2010的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2)…(xn,yn),且回归直线方程为$\hat{y}$=a+bx,则最小二乘法的思想是(  )
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个结论正确的是(  )
①若p∧q是真命题,则¬p可能是真命题;
②命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要条件;
④当α<0时,幂函数y=xα在区间(0,+∞)上单调递减.
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z满足z(1+i)=1(i为虚数单位),则z=$\frac{1}{2}$-$\frac{1}{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],则把y=f(x),x∈D叫闭函数.
(1)求闭函数y=x3符合条件②的区间[a,b];
(2)判断函数f(x)=$\frac{3}{4}$x+$\frac{1}{x}$,(x>0)是否为闭函数?并说明理由;
(3)已知[a,b]是正整数,且定义在(1,m)的函数y=k-$\frac{9}{x+1}$是闭函数,求正整数m的最小值,及此时实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(5-2x)}$的定义域是[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值为2,则a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图所示是毕达哥拉斯(Pythagoras)的生长程序:正方形上连接着等腰直角三角形,等腰直角三角形边上再连接正方形,如此继续,若共得到255个正方形,设初始正方形的边长为$\frac{{\sqrt{2}}}{2}$,则最小正方形的边长为$\frac{1}{16}$.

查看答案和解析>>

同步练习册答案