精英家教网 > 高中数学 > 题目详情
15.若θ∈(0,π),且sinθ+cosθ=0.2,则曲线x2sinθ+y2cosθ=1是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

分析 把sinθ+cosθ=0.2两边平方可得,sinθ•cosθ=-0.48<0,可判断θ为钝角,cosθ<0,从而判断方程所表示的曲线.

解答 解:因为θ∈(0,π),且sinθ+cosθ=0.2,
所以,两边平方可得,sinθ•cosθ=-0.48<0
所以θ∈($\frac{π}{2}$,π),且|sinθ|>|cosθ|,
所以sinθ>0,cosθ<0,
从而x2sinθ+y2cosθ=1表示焦点在x轴上的双曲线.
故选:C.

点评 本题考查双曲线的标准方程形式,由三角函数式判断角的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设等差数列{an}的前n项的和为Sn,已知a1=1,$\frac{S_2}{2}+\frac{S_3}{3}+\frac{S_4}{4}$=12.
(1)求{an}的通项公式an
(2)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,bn的前n项和Tn,求证;Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.把5张座位编号为1,2,3,4,5的电影票发给3个人,每人至少1张,最多分2张,且这两张具有连续的编号,那么不同的分法种数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\frac{1+2i}{a+bi}$=1-i(i为虚数单位,a,b∈R),则|a+bi|=(  )
A.$\frac{1}{2}+\frac{3}{2}i$B.1C.2D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校从高一年级学生中随机抽取40名学生,将他们的期末考试物理成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.
(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(2)利用这个频率分布直方图求40名学生物理成绩的中位数;
(3)若该校高一年级共有学生840人,试估计该校高一年级期中考试物理成绩不低于60分的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某医院有内科医生6人,外科医生4人.
(1)现要选派4名医生参加赈灾医疗队,内科医生和外科医生都要有人,不同的选派方法有多少种?
(2)现要选派6名医生参加3个不同地方的赈灾医疗队,要求每个地方由一名外科医生和一名内科医生组成,不同的选派方法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题中:
 ①回归直线除了经过样本点的中心,还至少经过一个样本点;
 ②将一组数据中的每个数都减去同一个数后,平均值有变化,方差没有变化;
③对分类变量X与Y,它们的随机变量K2的观测值k越小,“X与Y有关系”的把握程度越大;
 ④比较两个模型的拟合效果时,如果模型残差平方和越小,则相应的相关指数R2越大,该模型拟合的效果越好.
其中正确命题的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若指数函数f(x)的图象过点(2,4),则f(4)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在正方体ABCD-A1B1C1D1中,点M、N分别在AB1,BC1上,且AM=$\frac{1}{3}$AB1,BN=$\frac{1}{3}$BC1,则下列结论:
①AA1⊥MN 
②A1C1∥MN
③MN∥面A1B1C1D1 
④B1D1⊥MN
正确命题的序号是①③.

查看答案和解析>>

同步练习册答案