精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,D,E分别是AB,BB1的中点,AA1=AC=CB=4,AB=4
2

(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ) 过点E作一个平面α,使得α∥平面A1CD,求α与直棱柱ABC-A1B1C1的截面面积.
考点:直线与平面平行的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(1)连接AC1,交A1C于点F,利用三角形的中位线证明BC1∥DF,即可证明BC1∥平面A1CD;
(2)先把平面α做出来,再求其面积即可.
解答: (1)证明:连接AC1,交A1C于点F,
则F为AC1中点,
又D是AB中点,连接DF,则BC1∥DF.
因为DF?平面A1CD,BC1?平面AC1D,
所以BC1∥平面A1CD.…(6分)
(2)分别去BD、BC的中点为M、N,
连接MN,EM,EN,
则MN∥DC,EN∥A1D,
∴平面MNE∥平面A1CD,及α为平面MNE,
∵三棱柱ABC-A1B1C1中,AA1⊥面ABC,D,E分别是AB,BB1的中点,AA1=AC=CB=4,AB=4
2

可得:MN=EN=
2
,ME=
6

可求得:S△MNE=
3
2

故α与直棱柱ABC-A1B1C1的截面面积为
3
2
点评:本题主要考查线面平行的判定和性质以及截面的性质和面积的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=3且a1,a4,a10成等比数列,则(  )
A、an=2n+1
B、an=n+2
C、an=2n+1或an=3
D、an=n+2或an=3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),满足f(1)=0,且在(0,+∞)上单调递增,则xf(x)>0的解集为(  )
A、{x|x<-1或x>1}
B、{x|0<x<1或-1<x<0}
C、{x|0<x<1或x<-1}
D、{x|-1<x<0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
B、如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题
C、若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1≥0
D、“sinθ=
1
2
”是“θ=30°”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2},请写出集合A的所有子集
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a7=4,a19=2a9
(1)求{an}的通项公式;
(2)设bn=
1
2nan
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,∠ABC=90°,PB丄平面ABC,AB=BC=2
2
,PB=2,则点B到平面PAC的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(2x)=x,则f(4)=
 
,f(6)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax,g(x)=ax2-1,若a<0,记函数H(x)=f(x)-g(x)图象为曲线C,设点A(x1,y1),B(x2,y2),(x1<x2)是曲线C上不同的两点,直线AB的斜率为k,若存在x0∈(x1,x2),使得H′(x0)=k,试比较
x1+x2
2
与x0的大小.

查看答案和解析>>

同步练习册答案