精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x),满足f(1)=0,且在(0,+∞)上单调递增,则xf(x)>0的解集为(  )
A、{x|x<-1或x>1}
B、{x|0<x<1或-1<x<0}
C、{x|0<x<1或x<-1}
D、{x|-1<x<0或x>1}
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:先确定函数f(x)在(-∞,0)上单调递增,且f(-1)=0,再将不等式等价变形,即可得到结论.
解答: 解:∵定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(1)=0,
∴函数f(x)在(-∞,0)上单调递增,且f(-1)=0,
∴不等式xf(x)>0等价于
x>0
f(x)>0=f(1)
x<0
f(x)<0=f(-1)

∴x>1或-1≤x<-1
∴不等式xf(x)>0的解集为{x|x>1或x<-1}.
故选A.
点评:本题考查函数单调性与奇偶性的结合,关键利用函数上奇函数得到对称区间得单调性,经常考查,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:sinα=
5
5
,α∈(
π
2
,π),求sin2α和cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有(  )
A、3个B、4个C、5个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(
3
x+φ)(0<φ<π),若函数f(x)-f′(x)是奇函数,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1g
1
8
-1g125)÷81-
1
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:
52x-23•5x-50=0;
lg
5x+5
=1-
1
2
lg(2x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|0<x≤2},B={x|x<-3或x>1}
求:(1)A∩B       
(2)(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,D,E分别是AB,BB1的中点,AA1=AC=CB=4,AB=4
2

(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ) 过点E作一个平面α,使得α∥平面A1CD,求α与直棱柱ABC-A1B1C1的截面面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)ex-ax2,当a∈(2,3)时,求函数f(x)在[0,a]上的最大值.

查看答案和解析>>

同步练习册答案