精英家教网 > 高中数学 > 题目详情
6.已知命题p:关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立;命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象与函数y=mx-2的图象恰有两个交点;若p∨q为真,则实数m的取值范围是(-∞,-20]∪(0,4).

分析 命题p:关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立,?m≤(x3-3x2-9x+2)min,x∈[-2,2].令f(x)=x3-3x2-9x+2,利用导数研究函数的单调性极值与最值即可得出.
命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$=$\left\{\begin{array}{l}{x+1,x>1或x≤-1}\\{-x-1,-1<x<1}\end{array}\right.$,根据上述函数的图象与函数y=mx-2的图象恰有两个交点,画出图象即可得出m的取值范围.根据p∨q为真,可得p与q必然一真一假.即可得出m的取值范围.

解答 解:命题p:关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立,
?m≤(x3-3x2-9x+2)min,x∈[-2,2].
令f(x)=x3-3x2-9x+2,则f′(x)=3x2-6x-9=3(x-3)(x+1).
可得:x∈[-2,-1)时,f′(x)>0,此时函数f(x)单调递增;
x∈(-1,2]时,f′(x)<0,此时函数f(x)单调递减.
又f(-2)=0,f(2)=-20,可得x=2时,函数f(x)取得最小值,∴m≤-20.
命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$=$\left\{\begin{array}{l}{x+1,x>1或x≤-1}\\{-x-1,-1<x<1}\end{array}\right.$,
根据上述函数的图象
与函数y=mx-2的图象恰有两个交点,则0<m<4.
若p∨q为真,则p与q必然一真一假.
∴$\left\{\begin{array}{l}{m≤-20}\\{m≤0或m≥4}\end{array}\right.$,或$\left\{\begin{array}{l}{m>-20}\\{0<m<4}\end{array}\right.$,
解得m≤-20,或0<m<4.
实数m的取值范围是m≤-20,或0<m<4.
故答案为:(-∞,-20]∪(0,4).

点评 本题考查了利用导数研究函数的单调性极值与最值、函数图象的交点、简易逻辑的判定方法、数形结合方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.将数字“124467”重新排列后得到不同的偶数个数为(  )
A.72B.120C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P是椭圆$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{{b}_{1}^{2}}$=1(a1>b1>0)和双曲线 $\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2>0,b2>0)的一个交点,F1,F2是椭圆和双曲线的公共焦点,∠F1PF2=$\frac{π}{3}$,则$\frac{{b}_{1}}{{b}_{2}}$的值是(  )
A.3B.-3C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.
(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?
(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类选择社会科学类合计
男生6045105
女生304575
合计9090180
附:${K^2}=\frac{{n{{({ab-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
K00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简$\frac{sin\frac{α}{2}+cos\frac{α+β}{2}sin\frac{β}{2}}{cos\frac{α}{2}-sin\frac{α+β}{2}sin\frac{β}{2}}$=tan$\frac{α+β}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a+3b=1,求:
(1)9a2+b2,9a2+(b-1)2的最小值;
(2)$\frac{1}{3a}$+$\frac{1}{b}$(a,b>0),$\frac{4}{1-a}$+$\frac{1}{1-3b}$(a,b>0)的最小值;
(3)$\frac{1}{1-{a}^{2}}$+$\frac{1}{1-9{b}^{2}}$(a,b>0),$\frac{{a}^{2}}{1-a}$+$\frac{3{b}^{2}}{1-b}$(a,b>0)的最小值;
(4)$\sqrt{a+1}$+$\sqrt{b+1}$,$\sqrt{1-a}$+$\sqrt{2-6b}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从圆x2+y2-2x-2y+1=0外一点P(3,2)向这个圆作两条切线,则两条切线夹角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥1}\\{lo{g}_{4}x,0<x<1}\end{array}\right.$则f(f(2))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,三棱柱ABC-A1B1C1的各棱长均为2,且侧棱与底面垂直,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

同步练习册答案