精英家教网 > 高中数学 > 题目详情
1.化简$\frac{sin\frac{α}{2}+cos\frac{α+β}{2}sin\frac{β}{2}}{cos\frac{α}{2}-sin\frac{α+β}{2}sin\frac{β}{2}}$=tan$\frac{α+β}{2}$.

分析 把$\frac{α}{2}$看成$\frac{α+β}{2}$-$\frac{β}{2}$,利用两角差的三角公式,同角三角函数的基本关系,化简所给的式子,可得结果.

解答 解:$\frac{sin\frac{α}{2}+cos\frac{α+β}{2}sin\frac{β}{2}}{cos\frac{α}{2}-sin\frac{α+β}{2}sin\frac{β}{2}}$=$\frac{sin(\frac{α+β}{2}-\frac{β}{2})+cos\frac{α+β}{2}sin\frac{β}{2}}{cos(\frac{α+β}{2}-\frac{β}{2})-sin\frac{α+β}{2}sin\frac{β}{2}}$=$\frac{sin\frac{α+β}{2}cos\frac{β}{2}}{cos\frac{α+β}{2}cos\frac{β}{2}}$=tan$\frac{α+β}{2}$,
故答案为:tan$\frac{α+β}{2}$.

点评 本题主要考查两角差的三角公式的应用,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.要计算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2017}$的结果,如图程序框图中的判断框内可以填(  )
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m,n是两条不同的直线,α是平面,则下列命题中是真命题的是(  )
A.若m∥α,m∥n,则n∥αB.若m⊥α,n⊥α,则m∥nC.若m∥α,m⊥n,则n∥αD.若m⊥α,n⊥m,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶$\frac{n[(2a+c)b+(2c+a)d+(d-b)]}{6}$个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为(  )
A.1260B.1360C.1430D.1530

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.
(1)求抛物线E的方程;
(2)求点M到直线CD距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知命题p:关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立;命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象与函数y=mx-2的图象恰有两个交点;若p∨q为真,则实数m的取值范围是(-∞,-20]∪(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一直线过点(1,2)且与两坐标轴的正半轴围成的三角形面积最小,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2)
(1)求圆C的方程;
(2)若直线l:kx-y+k=0与圆C相切,求实数k的值;
(3)求圆C关于l1:y=2x+1对称的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{3x+3(x≤-1)}\\{f(x-1)+1(x>-1)}\end{array}\right.$,方程f(x)=x+1的解从小到大排成一个数列{an},该数列的前n项和为Sn,则$\frac{2{S}_{n+3}+10}{n}$的最小值为(  )
A.$\frac{28}{3}$B.$\frac{19}{2}$C.6D.2$\sqrt{10}$+3

查看答案和解析>>

同步练习册答案