精英家教网 > 高中数学 > 题目详情
7.已知△ABC为等边三角形,在△ABC内随机取一点P,则△BCP为钝角三角形的概率为(  )
A.$\frac{1}{4}+\frac{{\sqrt{3}}}{18}π$B.$\frac{1}{2}+\frac{{\sqrt{3}}}{18}π$C.$\frac{3}{4}-\frac{{\sqrt{3}}}{18}π$D.$\frac{1}{2}-\frac{{\sqrt{3}}}{18}π$

分析 以BC为直径作圆,根据圆周角定理得到P的位置,计算器面积,利用几何概型的公式解之.

解答 解:如图所示:以BC为直径作圆,与AB,AC分别相交于E,D,则P在图中阴影部分,即使得△BCP为钝角三角形,
设等边三角形吧边长为2,则阴影部分的面积为2×$\frac{\sqrt{3}}{4}×{1}^{2}$+$\frac{1}{6}π×{1}^{2}$=$\frac{\sqrt{3}}{2}+\frac{π}{6}$,等
边三角形的面积为$\frac{\sqrt{3}}{4}×{2}^{2}=\sqrt{3}$,
由几何概型的概率公式得到△BCP为钝角三角形的概率为:$\frac{\frac{\sqrt{3}}{2}+\frac{π}{6}}{\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{3}}{18}π$;
故选:B.

点评 本题主要考查了几何概率的求解,体现了转化、数形结合的数学思想,关键是明确满足条件的P的区域面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{{e}^{x}(x<0)}\end{array}\right.$,则f[f(-1)]=$\frac{1}{{e}^{2}}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在区间[a-1,2a+4]的偶函数f(x)=x2+(a-b)x+1,则不等式f(x)>f(b)的解集为(  )
A.[1,2]B.[-2,-1]C.(1,2]D.[-2,-1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,四边形OABP是平行四边形,过点P的直线与射线OA、OB分别相交于点M、N,若$\overrightarrow{OM}$=x$\overrightarrow{OA}$,$\overrightarrow{ON}$=y$\overrightarrow{OB}$.
(Ⅰ)利用$\overrightarrow{NM}$∥$\overrightarrow{MP}$,把y用x表示出来(即求y=f(x)的解析式);
(Ⅱ)设数列{an}的首项a1=1,an=f(an-1)(n≥2且n∈N*).
①求证:数列{${\frac{1}{a_n}}$}为等差数列;
②设bn=$\frac{1}{a_n}$,cn=$\frac{2^n}{{({2^{b_n}}+1)•({2^{{b_{n+1}}}}+1)}}$,求数列{cn}前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知tanα=2,
(1)求3cos2α+2sin2α的值;    
(2)求$\frac{{cos({π-α})cos({\frac{π}{2}+α})sin({α-\frac{3π}{2}})}}{{sin({3π+α})sin({α-π})cos({π+α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}中,a1=2,an+1=2an+3n+1,则数列{an}的通项公式an=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如表列联表:
感染未感染总计
服用104050
未服用203050
总计3070100
附表:
P(K2>k)0.100.050.025
k2.7063.8415.024
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d为样本容量)
参照附表,下列结论正确的是(  )
A.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”
B.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”
C.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”
D.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.锐角三角形△ABC满足b2-a2=ac,则$\frac{1}{tanA}-\frac{1}{tanB}$的取值范围为$(1,\frac{{2\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆E的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直线l过原点,且它的倾斜角α=$\frac{3π}{4}$,求l与圆E的交点A的极坐标(点A不是坐标原点);
(2)直线m过线段OA中点M,且直线m交圆E于B、C两点,求||MB|-|MC||的最大值.

查看答案和解析>>

同步练习册答案