精英家教网 > 高中数学 > 题目详情
20.函数y=a+bsinx(b<0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,写出函数的解析式.

分析 由b<0可知当sinx=1时,y取得最小值,当sinx=-1时,y取得最大值,列出方程组解出a,b.

解答 解:∵函数y=a+bsinx(b<0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{a+b=-\frac{1}{2}}\\{a-b=\frac{3}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-1}\end{array}\right.$.
∴函数解析式为y=$\frac{1}{2}-$sinx.

点评 本题考查了正弦函数的图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{(\frac{1}{4})^{x},x≤0}\end{array}\right.$,若f(x)≥2,则x的取值范围是(-∞,-$\frac{1}{2}$]∪(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等比数列{an}中,若a1=3,q=2,求a3与a5的等比中项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=$\frac{1}{2}$,2an+1=2an+1(n∈N)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2nan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=sinx+cosx(x∈R),令f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),则f2018($\frac{π}{4}$)=(  )
A.1B.$\sqrt{2}$C.-$\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的实轴长为2,点$P(2,\sqrt{6})$在此双曲线上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB中点N在圆x2+y2=5上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.自平面上一点O引两条射线OA,OB,P在OA上运动,Q在OB上运动且保持|$\overrightarrow{PQ}$|为定值2$\sqrt{2}$(P,Q不与O重合).已知∠AOB=120°,
(1)PQ的中点M的轨迹是椭圆的一部分(不需写具体方程);
(2)N是线段PQ上任-点,若|OM|=1,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范围是[1-$\frac{\sqrt{5}}{2}$,1+$\frac{\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知:
(1)$y=x+\frac{4}{x}$
(2)$y=sinx+\frac{4}{sinx}(0<x<π)$
(3)$y=\frac{{{x^2}+13}}{{\sqrt{{x^2}+9}}}$
(4)y=4•2x+2-x
(5)y=log3x+4logx3(0<x<1)
则其中最小值是4的函数有(4) (填入正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn,且S10=5,a7=1,则a1=(  )
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案