精英家教网 > 高中数学 > 题目详情
9.已知:
(1)$y=x+\frac{4}{x}$
(2)$y=sinx+\frac{4}{sinx}(0<x<π)$
(3)$y=\frac{{{x^2}+13}}{{\sqrt{{x^2}+9}}}$
(4)y=4•2x+2-x
(5)y=log3x+4logx3(0<x<1)
则其中最小值是4的函数有(4) (填入正确命题的序号)

分析 利用基本不等式或者利用函数的单调性求解函数的最值,判断选项即可.

解答 解:(1)因为$y=x+\frac{4}{x}$中x可以为负数,所以函数没有最小值,所以(1)不满足题意.
(2)$y=sinx+\frac{4}{sinx}(0<x<π)$,所以y=sinx+$\frac{1}{sinx}$+$\frac{3}{sinx}$≥2+3=5当且仅当sinx=1时,函数取得最小值:5,(2)不满足题意.
(3)$y=\frac{{{x^2}+13}}{{\sqrt{{x^2}+9}}}$=$\sqrt{{x}^{2}+9}$+$\frac{4}{\sqrt{{x}^{2}+9}}$>2$\sqrt{\sqrt{{x}^{2}+9}•\frac{4}{\sqrt{{x}^{2}+9}}}$=4.不满足题意,所以(3)不正确.
(4)y=4•2x+2-x=4•2x+$\frac{1}{{2}^{x}}$≥2$\sqrt{4•{2}^{x}•\frac{1}{{2}^{x}}}$=4,当且仅当$4•{2}^{x}=\frac{1}{{2}^{x}}$,即x=-2时取等号.所以(4)满足题意.
(5)y=log3x+4logx3(0<x<1),log3x<0,4logx3<0,显然不满足题意.
故选:(4)

点评 本题考查函数的最值的求法,基本不等式的应用,函数的单调性以及最值的判断,考查命题的真假的判断,注意基本不等式成立的条件,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,a3+a5=13,则a1+a2+…+a7=$\frac{91}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=a+bsinx(b<0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,写出函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于实数a,b,c,下列结论中正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,则$\frac{1}{a}$>$\frac{1}{b}$
C.若a<b<0,则$\frac{a}{b}$<$\frac{b}{a}$D.若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则ab<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数a,b,c满足a>b>c,则下列结论正确的是(  )
A.ac>bcB.ac>bcC.ca>cbD.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列四个结论,正确的是①③.(填序号)
①a>b,c<d⇒a-c>b-d;
②a>b>0,c<d<0⇒ac>bd;
③a>b>0⇒$\root{3}{a}>\root{3}{b}$;
④a>b>0⇒$\frac{1}{a^2}>\frac{1}{b^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-x+1,记函数f(x)的极大值为m,数列{an}的前n项和为Sn,且a1=m+$\frac{1}{2}$,$\frac{1}{{a}_{n+1}}$=$\frac{{a}_{n}{+a}_{n}^{2}}{{2a}_{n}^{2}}$(an≠1).
(1)证明:数列{$\frac{1}{{a}_{n}}$-1}是等比数列,并求数列{an}的通项公式;
(2)证明:2e${\;}^{{S}_{n}}$>2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在半径为r的圆O上的弓形中,底AB=$\sqrt{2}$r,C为劣弧$\widehat{AB}$上的一点,且CD⊥AB,D为垂足,点C圆O上运动,问点C在什么位置时,△ADC的面积有最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集为R,集合M={-1,1,2,4},N={x|x2-2x>3},则M∩(∁RN)=(  )
A.{-1,1,2}B.{1,2}C.{4}D.{x|-1≤x≤2}

查看答案和解析>>

同步练习册答案