精英家教网 > 高中数学 > 题目详情
18.在半径为r的圆O上的弓形中,底AB=$\sqrt{2}$r,C为劣弧$\widehat{AB}$上的一点,且CD⊥AB,D为垂足,点C圆O上运动,问点C在什么位置时,△ADC的面积有最大值?

分析 先表示出△ACD的面积,再用基本不等式求出最大面积.

解答 解:∵半径为r的圆O上的弓形中,底AB=$\sqrt{2}$r,
∴∠AOB=90°.
连接OC,设∠CAB=α,则∠BOC=2α,∠AOC=90°-2α,
∴AC=2rsin(45°-α),
∴AD=ACcosα,
∴△ACD的面积S=$\frac{1}{2}×AC×AD×sinα$=r2sin2(45°-α)sin2α
=$\frac{{r}^{2}}{2}×(1-sin2α)sin2α$≤$\frac{{r}^{2}}{2}×(\frac{1}{2})^{2}$=$\frac{{r}^{2}}{8}$.
当且仅当1-sin2α=sin2α,即sin2α=$\frac{1}{2}$,
∴α=$\frac{π}{12}$时,△ACD的面积最大,最大面积为$\frac{{r}^{2}}{8}$.

点评 本题考查三角形面积的计算,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=$\frac{1}{2}$,2an+1=2an+1(n∈N)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2nan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知:
(1)$y=x+\frac{4}{x}$
(2)$y=sinx+\frac{4}{sinx}(0<x<π)$
(3)$y=\frac{{{x^2}+13}}{{\sqrt{{x^2}+9}}}$
(4)y=4•2x+2-x
(5)y=log3x+4logx3(0<x<1)
则其中最小值是4的函数有(4) (填入正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|2x-1<1},B=(-2,2],则A∩B=(  )
A.(-2,0)B.(-2,2]C.(1,2]D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面是关于公差d>0的等差数列{an}的四个命题:
(1)数列{an}是递增数列;
(2)数列{nan}是递增数列;
(3)数列$\left\{{\frac{a_n}{n}}\right\}$是递减数列;
(4)数列{an+3nd}是递增数列.
其中的真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$,则z=x-y的最大值为(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn,且S10=5,a7=1,则a1=(  )
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|(x-4)(x+2)<0},B={-3,-1,1,3,5},则A∩B=(  )
A.{-1,1,3}B.{-3,-1,1,3}C.{-1,1,3,5}D.{-3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A,B,C为圆O上三点,CO的延长线与线段AB的延长线交于圆O外一点D,且|OD|=2|OC|,若$\overrightarrow{OC}$=p$\overrightarrow{OA}$+q$\overrightarrow{OB}$,则p+q的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

同步练习册答案