| A. | 1 | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | 0 |
分析 由题意求解可得周期为4,可得f2018(x)=f2(x),代值计算可得.
解答 解:∵f(x)=sinx+cosx(x∈R),
∴f1(x)=f′(x)=cosx-sinx,
∴f2(x)=f1′(x)=-sinx-cosx,
∴f3(x)=f2′(x)=-cosx+sinx,
∴f4(x)=f3′(x)=sinx+cosx,
∴函数fn+1(x)的周期是4,
∴由周期性可得∴f2018(x)=f2(x)=sinx+cosx
∴f2018($\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$=-$\sqrt{2}$
故选:C.
点评 本题考查导数的运算,涉及三角函数的导数和周期性,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{2}}}{10}$ | B. | $\frac{{3\sqrt{5}}}{10}$ | C. | $\frac{{\sqrt{2}}}{10}$ | D. | $\frac{{\sqrt{5}}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$,+∞) | B. | [2,+∞) | C. | (0,+∞) | D. | [1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com