精英家教网 > 高中数学 > 题目详情
7.正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,则点F到平面A1D1E的距离为(  )
A.$\frac{{3\sqrt{2}}}{10}$B.$\frac{{3\sqrt{5}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{5}}}{10}$

分析 取CC1的中点O,连接D1O,OE,OF,D1F,点F到平面A1D1E的距离就是点F到平面OD1E的距离h,由等体积可得点F到平面A1D1E的距离.

解答 解:取CC1的中点O,连接D1O,OE,OF,D1F,则△D1FO的面积S=a2-2×$\frac{1}{2}$×a×$\frac{a}{2}$-$\frac{1}{2}$×$\frac{a}{2}$×$\frac{a}{2}$=$\frac{3}{8}$a2
点F到平面A1D1E的距离=点F到平面OD1E的距离h,
由等体积可得$\frac{1}{3}$×$\frac{1}{2}\sqrt{{a}^{2}+\frac{1}{4}{a}^{2}}$×a×h=$\frac{1}{3}$×$\frac{3}{8}$a2×a,
∴h=$\frac{3\sqrt{5}}{10}$a.
故选:B.

点评 本题考查点到平面的距离,考查体积公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a7=20,a12=10,求公差d及a16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若随机变量ξ~N(0,1),则P(|ξ|>3)等于(  )
A.0.9974B.0.498C.0.9744D.0.0026

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=sinx+cosx(x∈R),令f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),则f2018($\frac{π}{4}$)=(  )
A.1B.$\sqrt{2}$C.-$\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点M的球坐标为(8,$\frac{π}{3}$,$\frac{5}{6}$π),则它的直角坐标为(  )
A.(-6,2$\sqrt{3}$,4)B.(6,2$\sqrt{3}$,4)C.(-6,-2$\sqrt{3}$,4)D.(-6,2$\sqrt{3}$,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.自平面上一点O引两条射线OA,OB,P在OA上运动,Q在OB上运动且保持|$\overrightarrow{PQ}$|为定值2$\sqrt{2}$(P,Q不与O重合).已知∠AOB=120°,
(1)PQ的中点M的轨迹是椭圆的一部分(不需写具体方程);
(2)N是线段PQ上任-点,若|OM|=1,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范围是[1-$\frac{\sqrt{5}}{2}$,1+$\frac{\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆C的长轴长为10,离心率为$\frac{4}{5}$,则椭圆C的标准方程是(  )
A.$\frac{x^2}{100}+\frac{y^2}{36}$=1
B.$\frac{x^2}{100}+\frac{y^2}{36}$=1或 $\frac{x^2}{36}+\frac{y^2}{100}$=1
C.$\frac{x^2}{25}+\frac{y^2}{9}$=1
D.$\frac{x^2}{25}+\frac{y^2}{9}$=1或 $\frac{x^2}{9}+\frac{y^2}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点P是椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{25}$=1上的一点,F1,F2是椭圆的两个焦点,若PF1⊥PF2,则|PF1|与|PF2|差的绝对值是(  )
A.0B.2$\sqrt{5}$C.4$\sqrt{5}$D.2$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$表示的平面区域为Ω,则当直线y=k(x-1)与区域Ω有公共点时,k的取值范围是(  )
A.[-2,+∞)B.(-∞,0]C.[-2,0]D.(-∞,-2]∪[0,+∞)

查看答案和解析>>

同步练习册答案