精英家教网 > 高中数学 > 题目详情
19.已知椭圆C的长轴长为10,离心率为$\frac{4}{5}$,则椭圆C的标准方程是(  )
A.$\frac{x^2}{100}+\frac{y^2}{36}$=1
B.$\frac{x^2}{100}+\frac{y^2}{36}$=1或 $\frac{x^2}{36}+\frac{y^2}{100}$=1
C.$\frac{x^2}{25}+\frac{y^2}{9}$=1
D.$\frac{x^2}{25}+\frac{y^2}{9}$=1或 $\frac{x^2}{9}+\frac{y^2}{25}$=1

分析 结合双曲线的条件,求出a,b的值即可.

解答 解:∵椭圆C的长轴长为10,
∴2a=10,a=5
∵离心率为$\frac{4}{5}$,
∴e=$\frac{c}{a}$=$\frac{4}{5}$,∴c=4,
则b2=a2-c2=25-16=9,
若焦点在x轴,椭圆的方程为$\frac{x^2}{25}+\frac{y^2}{9}$=1,
若焦点在y轴,椭圆的方程 $\frac{x^2}{9}+\frac{y^2}{25}$=1,
故选:D.

点评 本题主要考查椭圆的方程和性质,根据条件求出a,b的值是解决本题的关键.注意要讨论对称轴的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.有4种树木和5种花卉,某小区物业打算从中选出2种树木和3种花卉进行小区绿化,则不同选择方案的种数为(  )
A.6B.16C.60D.720

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:cos2A+cos2($\frac{π}{3}$-A)+cos2($\frac{π}{3}$+A)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,则点F到平面A1D1E的距离为(  )
A.$\frac{{3\sqrt{2}}}{10}$B.$\frac{{3\sqrt{5}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,对称轴为x轴,它的准线过双曲线C1的左焦点F1,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,双曲线C1的一个焦点到其渐近线距离的平方是2+2$\sqrt{2}$,则抛物线C2的方程是y2=4($\sqrt{2}$+1)x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数a,b,c满足a>b>c,则下列结论正确的是(  )
A.ac>bcB.ac>bcC.ca>cbD.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将半径都为1的4个彼此相切的钢球完全装入形状为正三棱台的容器里,该正三棱台的高的最小值为(  )
A.$\frac{2+2\sqrt{6}}{3}$B.1+$\frac{{2\sqrt{6}}}{3}$C.2+$\frac{{2\sqrt{6}}}{3}$D.3+$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知四边形ABCD是直角梯形,AB⊥BC,下列结论中成立的是(  )
A.$\overrightarrow{DA}$•$\overrightarrow{DC}$<0B.$\overrightarrow{AB}$•$\overrightarrow{DC}$>0C.$\overrightarrow{DC}$•$\overrightarrow{CB}$<0D.$\overrightarrow{AC}$•$\overrightarrow{BD}$>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过三点0(0,0),M(1,1),N(4,2)的圆的方程为x2+y2-8x+6y=0.

查看答案和解析>>

同步练习册答案