精英家教网 > 高中数学 > 题目详情
9.过三点0(0,0),M(1,1),N(4,2)的圆的方程为x2+y2-8x+6y=0.

分析 设所求的圆的方程为x2+y2+Dx+Ey+F=0,把它经过的3个点的坐标代入,解方程组求得D、E、F的值,可得要求的圆的方程.

解答 解:设过三点0(0,0),M(1,1),N(4,2)的圆的方程为x2+y2+Dx+Ey+F=0,
则由$\left\{\begin{array}{l}{F=0}\\{1+1+D+E+F=0}\\{16+4+4D+2E+F=0}\end{array}\right.$求得$\left\{\begin{array}{l}{D=-8}\\{E=6}\\{F=0}\end{array}\right.$,
故要求的圆的方程为x2+y2-8x+6y=0,
故答案为:x2+y2-8x+6y=0.

点评 本题主要考查利用待定系数法求圆的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知椭圆C的长轴长为10,离心率为$\frac{4}{5}$,则椭圆C的标准方程是(  )
A.$\frac{x^2}{100}+\frac{y^2}{36}$=1
B.$\frac{x^2}{100}+\frac{y^2}{36}$=1或 $\frac{x^2}{36}+\frac{y^2}{100}$=1
C.$\frac{x^2}{25}+\frac{y^2}{9}$=1
D.$\frac{x^2}{25}+\frac{y^2}{9}$=1或 $\frac{x^2}{9}+\frac{y^2}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是△ABC所在平面上的一点,若$\overrightarrow{PO}$=$\frac{1}{3}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)(其中P为平面上任意一点),则O点是△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$表示的平面区域为Ω,则当直线y=k(x-1)与区域Ω有公共点时,k的取值范围是(  )
A.[-2,+∞)B.(-∞,0]C.[-2,0]D.(-∞,-2]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx-ωπ)(ω>0)的最小正周期为π,则f($\frac{π}{12}$)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在正方形ABCD中,AD=4,E为DC上一点,且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,则$\overrightarrow{AB}$•$\overrightarrow{AE}$(  )
A.20B.16C.15D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设α,β为锐角,且$\overrightarrow{a}$=(sinα,-cosα),$\overrightarrow{b}$=(-cosβ,sinβ),$\overrightarrow{a}$+$\overrightarrow{b}$=($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{2}}{2}$),求cos(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a$+$\overrightarrow b$=(2,-8),$\overrightarrow a$-$\overrightarrow b$=(-8,16),则$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为-$\frac{63}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,平面ABCD⊥平面ABEF,其中四边形ABCD为矩形,四边形ABEF为等腰梯形,AB∥EF,点O为AB的中点,M为CD的中点,AB=2,AF=EF=1
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)若直线AM与平面CBF所成角的正弦值为$\frac{\sqrt{5}}{10}$,求BC的长.

查看答案和解析>>

同步练习册答案