精英家教网 > 高中数学 > 题目详情
11.将半径都为1的4个彼此相切的钢球完全装入形状为正三棱台的容器里,该正三棱台的高的最小值为(  )
A.$\frac{2+2\sqrt{6}}{3}$B.1+$\frac{{2\sqrt{6}}}{3}$C.2+$\frac{{2\sqrt{6}}}{3}$D.3+$\frac{{2\sqrt{6}}}{3}$

分析 底面放三个钢球,上再落一个钢球时体积最小,把钢球的球心连接,则又可得到一个棱长为2的小正四面体,且小正四面体的中心和正三棱台的中心应该是重合的,求出小正四面体的中心到底面的距离即可.

解答 解:由题意知,底面放三个钢球,上再落一个钢球时体积最小.
于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为$\frac{2\sqrt{6}}{3}$,
三棱台的高=小正四面体的高+2个钢球的半径,即三棱台的高为:$\frac{2\sqrt{6}}{3}$+2.
故选:C.

点评 本题考查了棱台的结构特征.三棱台的高=小正四面体的高+2个钢球的半径是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.有8名男生和5名女生,从中任选6人.
(1)有多少种不同的选法?
(2)其中有3名女生,共有多少种不同的选法?
(3)其中至多有3名女生,共有多少种不同的选法?
(4)其中有2名女生、4名男生,分别担任6种不同的工作,共有多少种不同的分工方法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点M的球坐标为(8,$\frac{π}{3}$,$\frac{5}{6}$π),则它的直角坐标为(  )
A.(-6,2$\sqrt{3}$,4)B.(6,2$\sqrt{3}$,4)C.(-6,-2$\sqrt{3}$,4)D.(-6,2$\sqrt{3}$,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆C的长轴长为10,离心率为$\frac{4}{5}$,则椭圆C的标准方程是(  )
A.$\frac{x^2}{100}+\frac{y^2}{36}$=1
B.$\frac{x^2}{100}+\frac{y^2}{36}$=1或 $\frac{x^2}{36}+\frac{y^2}{100}$=1
C.$\frac{x^2}{25}+\frac{y^2}{9}$=1
D.$\frac{x^2}{25}+\frac{y^2}{9}$=1或 $\frac{x^2}{9}+\frac{y^2}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与抛物线D:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为$\sqrt{3}$
(Ⅰ)求双曲线C的渐近线方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点P是椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{25}$=1上的一点,F1,F2是椭圆的两个焦点,若PF1⊥PF2,则|PF1|与|PF2|差的绝对值是(  )
A.0B.2$\sqrt{5}$C.4$\sqrt{5}$D.2$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是△ABC所在平面上的一点,若$\overrightarrow{PO}$=$\frac{1}{3}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)(其中P为平面上任意一点),则O点是△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设α,β为锐角,且$\overrightarrow{a}$=(sinα,-cosα),$\overrightarrow{b}$=(-cosβ,sinβ),$\overrightarrow{a}$+$\overrightarrow{b}$=($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{2}}{2}$),求cos(α+β).

查看答案和解析>>

同步练习册答案