精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,并且a2=2,S5=15,数列{bn}满足:b1=
1
2
,bn+1=
n+1
2n
bn(n∈N+)
,记数列{bn}的前n项和为Tn
(1)求数列{an}的前n项和公式Sn
(2)求数列{bn}的前n项和公式Tn
(3)记集合M={n|
2Sn(2-Tn)
n+2
≥λ,n∈N+}
,若M的子集个数为16,求实数λ的取值范围.
考点:数列的求和,数列的应用
专题:等差数列与等比数列
分析:(1)利用等差数列的通项公式及前n项和公式即可得出;
(2)由题意得
bn+1
bn
=
1
2
n+1
n
,利用“叠乘法”可得bn,再利用“错位相减法”即可得出Tn
(3)由上面可得
2Sn(2-Tn)
n+2
=
n2+n
2n
,令f(n)=
n2+n
2n
,研究数列f(n)=
n2+n
2n
的单调性,可得n≥3时,f(n)单调递减.由于集合M的子集个数为16,可得M中的元素个数为4,不等式
n2+n
2n
≥λ
,n∈N+解的个数为4,解出即可.
解答: 解:(1)设数列{an}的公差为d,
由题意得
a1+d=2
5a1+10d=15
,解得
a1=1
d=1

∴an=n,
Sn=
n2+n
2

(2)由题意得
bn+1
bn
=
1
2
n+1
n

叠乘得bn=
bn
bn-1
bn-1
bn-2
•…•
b2
b1
b1=(
1
2
)n(
n
n-1
×
n-1
n-2
×…×
2
1
)=
n
2n

由题意得Tn=
1
2
+
2
22
+
3
23
+…+
n
2n

1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n-1
2n
+
n
2n+1

②-①得:
1
2
Tn=
1
2
+
1
4
+
1
8
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1--
n+2
2n+1

Tn=2-
n+2
2n

(3)由上面可得
2Sn(2-Tn)
n+2
=
n2+n
2n
,令f(n)=
n2+n
2n

则f(1)=1,f(2)=
3
2
f(3)=
3
2
f(4)=
5
4
f(5)=
15
16

下面研究数列f(n)=
n2+n
2n
的单调性,
f(n+1)-f(n)=
(n+1)2+n+1
2n+1
-
n2+n
2n
=
(n+1)(2-n)
2n+1

∴n≥3时,f(n+1)-f(n)<0,f(n+1)<f(n),即f(n)单调递减.
∵集合M的子集个数为16,
∴M中的元素个数为4,
∴不等式
n2+n
2n
≥λ
,n∈N+解的个数为4,
15
16
<λ≤1
点评:本题综合考查了等差数列与等比数列的通项公式及前n项和公式、“叠乘法”、“错位相减法”、数列的单调性、集合的性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设一正方形边长为1,取各边的中点连成一个新的正方形,记其面积为a1,然后在得到的新正方形中,再连接各边中点,又得到一个新正方形,记其面积为a2,按此方法依次做下去…
(1)求a1和a2
(2)记an为第n次得到的正方形面积,写出关于an的表达式(不必证明);
(3)求经过n次后所得n个正方形的面积之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)2
2
42
82

(2)(
3
-
2
0+(
1
2
-2+125
2
3

(3)
4ab2
3a2b
(a>0,b>0)
(4)lg25+lg40
(5)lg5-lg50
(6)log34+log38-log3
32
9

(7)log2(log232-log2
3
4
+log26)
(8)
1
6
log264+
1
2
log864+log381
(9)2log525+3log264-8lg1-log88
(10)loga
na
+loga
1
an
+loga
1
na

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+1,g(x)=ex(其中e是自然对数的底数).
(1)若a=-1,求函数y=f(x)•g(x)在[-1,2]上的最大值;
(2)若a=-1,关于x的方程f(x)=k•g(x)有且仅有一个根,求实数k的取值范围;
(3)若对任意的x1、x2∈[0,2],x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a是实数).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若函数f(x)在(0,1]上是增函数,求实数a的取值范围;
(3)是否存在实数a,使得当x∈(0,1]时,f(x)有最大值1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A、B是椭圆C:
x2
m2
+
y2
n2
=1(m>0,n>0)与直线x-3y+2=0的交点.点M是AB的中点,且点M的横坐标为-
1
2
.若椭圆C的焦距为8椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差为2的等差数列{an}的前n项和为Sn(n∈N*),且S3+S5=58.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,且b1b10=
1
2
a2
,记Tn=log3b1+log3b2+log3b3+…+log3bn,求T10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+4
x
的定义域(  )
A、{x|x≠0}
B、(-4,+∞)
C、(-4,0)∪(0,+∞)
D、[-4,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,|AB|=6,|AC|=8,O为△ABC的外心,则
AO
BC
=
 

查看答案和解析>>

同步练习册答案