精英家教网 > 高中数学 > 题目详情
12.在直角△ABC中,斜边AC=1,∠BAC=30°,将直角△ABC绕直角边AB旋转一周所形成的几何体的体积为(  )
A.$\frac{{\sqrt{3}}}{24}π$B.$\frac{{\sqrt{3}}}{8}π$C.$\frac{1}{16}π$D.$\frac{1}{8}π$

分析 由已知可得:将直角△ABC绕直角边AB旋转一周所形成的几何体是底面半径为$\frac{1}{2}$,高为$\frac{\sqrt{3}}{2}$的圆锥,代入圆锥体积公式,可得答案.

解答 解:∵在直角△ABC中,斜边AC=1,∠BAC=30°,
∴AB=$\frac{\sqrt{3}}{2}$,BC=$\frac{1}{2}$,
将直角△ABC绕直角边AB旋转一周所形成的几何体是底面半径为$\frac{1}{2}$,高为$\frac{\sqrt{3}}{2}$的圆锥,
故体积V=$\frac{1}{3}Sh$=$\frac{1}{3}$×$[π×(\frac{1}{2})^{2}]×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{24}π$,
故选:A.

点评 本题考查的知识点是旋转体,根据已知判断出几何体的形状,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若α是第一象限角,则sinα+cosα的值与1的大小关系是(  )
A.sin α+cos α>1B.sin α+cos α=1C.sin α+cos α<1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-2)>0}=(  )
A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{ x|x<0或x>6}D.{ x|x<-2或x>5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\frac{{{2^x}+a}}{{{2^x}+1}}$为奇函数,g(x)=$\left\{\begin{array}{l}alnx,x>0\\{e^{ax}},x≤0\end{array}$,则不等式g(x)>1的解集为(  )
A.(-∞,e-1B.(-∞,0)∪(0,e)C.(e,+∞)D.(-∞,0)∪(0,e-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,记Sn=a1+a2+…+an,已知a5=2S4+3,a6=2S5+3,则此数列的公比q为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线l与曲线$y=-\frac{1}{x}$和曲线y=lnx均相切,则这样的直线l的条数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x)-ln(1-x).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求证:当x∈(0,1)时,$f(x)>2({x+\frac{x^3}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正项数列{an}中,其前n项和为Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>b>0,证明:$\frac{a-b}{a}$<ln$\frac{a}{b}$<$\frac{a-b}{b}$.

查看答案和解析>>

同步练习册答案