精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=ln(1+x)-ln(1-x).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求证:当x∈(0,1)时,$f(x)>2({x+\frac{x^3}{3}})$.

分析 (1)求得函数的导数,求得切线的斜率和切点坐标,即可得到所求切线的方程;
(2)构造函数y=ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$),0<x<1,求得导数,判断符号,由单调性即可得证.

解答 解:(1)f(x)=ln$\frac{1+x}{1-x}$的导数为
f′(x)=$\frac{1-x}{1+x}$•$\frac{2}{(x-1)^{2}}$=-$\frac{2}{{x}^{2}-1}$,
可得在点(0,f(0))处的切线斜率为2,切点(0,0),
即有在点(0,f(0))处的切线方程为y=2x;
(2)证明:由y=ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$),0<x<1,
导数为y′=$\frac{1-x}{1+x}$•$\frac{2}{(1-x)^{2}}$-2(1+x2
=$\frac{2}{1-{x}^{2}}$-2(1+x2),
由0<x<1可得y′=$\frac{2{x}^{4}}{1-{x}^{2}}$>0,
即有导数y′>0在(0,1)恒成立,
则有函数ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$)在(0,1)递增,
则有ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$)>0,
故当x∈(0,1)时,$f(x)>2({x+\frac{x^3}{3}})$.

点评 本题考查导数的运用:求切线的方程和单调区间,考查不等式的证明,注意运用单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是($\sqrt{3}$,$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a为实数,若复数z=(a2-1)+(a+1)i为纯虚数,则$\frac{a+{i}^{2015}}{1+i}$的值为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在直角△ABC中,斜边AC=1,∠BAC=30°,将直角△ABC绕直角边AB旋转一周所形成的几何体的体积为(  )
A.$\frac{{\sqrt{3}}}{24}π$B.$\frac{{\sqrt{3}}}{8}π$C.$\frac{1}{16}π$D.$\frac{1}{8}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足a1=1,an+1=an+2n,则a10=(  )
A.1 024B.1 023C.2 048D.2 047

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,A={x|x≤2,x∈R},B={1,2,3,4},则B∩∁UA=(  )
A.{4}B.{3,4}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设集合A={a,b,c},B={b,c},则满足S⊆A且S∩B≠∅的集合S的个数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)判断并证明函数f(x)=x+$\frac{4}{x}$在区间(2,+∞)上的单调性;
(2)试写出f(x)=x+$\frac{a}{x}$(a>0)在(0,+∞)上的单调区间(不用证明);
(3)根据(2)的结论,求f(x)=x+$\frac{16}{x}$在区间[1,8]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的定义域为D,若存在非零常数t,使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t阶函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-2a2|-2a2,且f(x)为R上的8阶函数,那么实数a的取值范围是(  )
A.[-1,1]B.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]C.(-∞,-1]∪[1,+∞)D.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

同步练习册答案