分析 (1)求得函数的导数,求得切线的斜率和切点坐标,即可得到所求切线的方程;
(2)构造函数y=ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$),0<x<1,求得导数,判断符号,由单调性即可得证.
解答 解:(1)f(x)=ln$\frac{1+x}{1-x}$的导数为
f′(x)=$\frac{1-x}{1+x}$•$\frac{2}{(x-1)^{2}}$=-$\frac{2}{{x}^{2}-1}$,
可得在点(0,f(0))处的切线斜率为2,切点(0,0),
即有在点(0,f(0))处的切线方程为y=2x;
(2)证明:由y=ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$),0<x<1,
导数为y′=$\frac{1-x}{1+x}$•$\frac{2}{(1-x)^{2}}$-2(1+x2)
=$\frac{2}{1-{x}^{2}}$-2(1+x2),
由0<x<1可得y′=$\frac{2{x}^{4}}{1-{x}^{2}}$>0,
即有导数y′>0在(0,1)恒成立,
则有函数ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$)在(0,1)递增,
则有ln$\frac{1+x}{1-x}$-2(x+$\frac{{x}^{3}}{3}$)>0,
故当x∈(0,1)时,$f(x)>2({x+\frac{x^3}{3}})$.
点评 本题考查导数的运用:求切线的方程和单调区间,考查不等式的证明,注意运用单调性,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{24}π$ | B. | $\frac{{\sqrt{3}}}{8}π$ | C. | $\frac{1}{16}π$ | D. | $\frac{1}{8}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {3,4} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$] | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com