精英家教网 > 高中数学 > 题目详情
17.设x>0,y>0,下列各式中正确的是(  )
A.ln(x+y)=lnx+lnyB.$\frac{lgx}{lgy}$=lg$\frac{x}{y}$C.lg$\frac{x}{y}$=lgx-lgyD.lg(xy)=lgx•lgy

分析 直接利用对数的运算性质逐一核对四个命题得答案.

解答 解:∵lnx+lny=lnxy,∴A错误;
由商的对数等于对数的差可得:$lg\frac{x}{y}=lgx-lgy$,故B错误,C正确;
∵lg(xy)=lgx+lgy,∴D错误.
故选:C.

点评 本题考查对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.给出下列几种说法:
①若非零向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若向量$\overrightarrow{a}$与$\overrightarrow{b}$同向,且|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$;
③若两向量有相同的基线,则两向量相等;
④若$\overrightarrow{a}$$∥\overrightarrow{b}$,$\overrightarrow{b}∥\overrightarrow{c}$,则$\overrightarrow{a}∥\overrightarrow{c}$
其中错误说法的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.当实数m为何值时,sinx=$\frac{1+m}{2+m}$有意义?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}•{bn}满足a1=2,an-1=an(an+1-1),bn=an-1.
(I)求数列{bn}的通项公式;
(Ⅱ)求数列{$\frac{{2}^{n}}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,A=$\frac{π}{6}$,$\overrightarrow{AB}$$•\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{BC}$2,|$\overrightarrow{AB}$|=1.
(I)求角B的大小;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知cos2θ=$\frac{\sqrt{2}}{4}$,则sin4θ-cos4θ的值为-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2|x-a|(a∈R),求f(x)在[1,2]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等比数列{an}中,an>0,a1=256,S3=448,Tn为数列{an}的前n项乘积,则T17=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在数列{an}中,an+1-an=3,a2=4,Sn为{an}的前n项和,则S5=(  )
A.30B.35C.45D.50

查看答案和解析>>

同步练习册答案