精英家教网 > 高中数学 > 题目详情
7.给出下列几种说法:
①若非零向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若向量$\overrightarrow{a}$与$\overrightarrow{b}$同向,且|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$;
③若两向量有相同的基线,则两向量相等;
④若$\overrightarrow{a}$$∥\overrightarrow{b}$,$\overrightarrow{b}∥\overrightarrow{c}$,则$\overrightarrow{a}∥\overrightarrow{c}$
其中错误说法的序号是①②③④.

分析 根据向量的定义进行判断.

解答 解:共线向量模长不一定相等,故①错误;
向量不能比较大小,故②错误;
向量的基线相等,但长度不一定相等,故③错误;
若$\overrightarrow{b}$=$\overrightarrow{0}$,则对任何向量$\overrightarrow{a},\overrightarrow{c}$都有$\overrightarrow{a}$$∥\overrightarrow{b}$,$\overrightarrow{b}∥\overrightarrow{c}$,但$\overrightarrow{a},\overrightarrow{c}$不一定共线,故④错误.
故答案为:①②③④.

点评 本题考查了平面向量的有关概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.对于数列{an}与{bn},若对数列{cn}的每一项cn,均有ck=ak或ck=bk,则称数列{cn}是{an}与{bn}的一个“并数列”.
(1)设数列{an}与{bn}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{cn}是{an}与{bn}一个“并数列”求所有可能的有序数组(c1,c2,c3);
(2)已知数列{an},{cn}均为等差数列,{an}的公差为1,首项为正整数t;{cn}的前10项和为-30,前20项的和为-260,若存在唯一的数列{bn},使得{cn}是{an}与{bn}的一个“并数列”,求t的值所构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=$\sqrt{x}$+log2(x+1),则f(-1)=(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了测量学校操场四边形ABCD的周长和面积,在操场中间取一点O.测得OA=40m,OB=37m,OC=42m,OD=44m,且∠DOA=120°,∠AOB=60°,∠BOC=45°,∠COD=135°.
(1)试求四边形的周长;
(2)试求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sin2α=-$\frac{12}{25}$,且α为第二象限角,则sinα-cosα=$\frac{\sqrt{37}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,Sn=2n+1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{4}{3}$-$\frac{1}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.利用函数周期性的定义求证函数f(x)=$\sqrt{1-cos2x}$+$\sqrt{1+cos2x}$的周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四面体的6条棱所在的直线中有3对异面直线,那么在过正八面体(由2个棱长相同的四棱锥拼接而成,如图所示)的任意2个顶点的所有直线中,随机取2条,则这2条直线异面的情况有24种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x>0,y>0,下列各式中正确的是(  )
A.ln(x+y)=lnx+lnyB.$\frac{lgx}{lgy}$=lg$\frac{x}{y}$C.lg$\frac{x}{y}$=lgx-lgyD.lg(xy)=lgx•lgy

查看答案和解析>>

同步练习册答案