分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)求出函数的导数,通过讨论x的范围,求出f(x)的最小值,得到关于b的不等式,解出即可.
解答 解:(1)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
当a>1时,lna>0,当x∈(0,+∞)时,2x>0,ax>1,∴ax-1>0,
所以f'(x)>0,故函数f(x)在(0,+∞)上单调递增;
当0<a<1时,lna<0,当x∈(0,+∞)时,2x>0,ax<1,∴ax-1<0,
所以f'(x)>0,故函数f(x)在(0,+∞)上单调递增,
综上,f(x)在(0,+∞)上单调递增,
(2)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
①当x>0时,由a>1,可知ax-1>0,lna>0,∴f'(x)>0;
②当x<0时,由a>1,可知ax-1<0,lna>0,∴f'(x)<0;
③当x=0时,f'(x)=0,∴f(x)在[-1,0]上递减,在[0,1]上递增,
∴当x∈[-1,1]时,f(x)min=f(0)=1-b,
若存在x0∈[-1,1],使得f(x0)≤e-1,
即f(x)min≤e-1即可,故1-b≤e-1,
解得:b≥2-e.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x2+4)′=2x+4 | B. | ${({{{log}_2}x})^′}=\frac{1}{xln2}$ | C. | (cosx)′=-sinx | D. | ${({\frac{1}{x}})^′}=-\frac{1}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3 | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4×4=16 | B. | 9×4=36 | C. | 4×4×4=64 | D. | 9×4+7=43 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com