精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然对数的底数,
(1)讨论函数f(x)在(0,+∞)上的单调性
(2)当a>1时,若存在x0∈[-1,1],使得f(x0)≤e-1,求实数b的取值范围.(参考公式:(ax)'=axlna)

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)求出函数的导数,通过讨论x的范围,求出f(x)的最小值,得到关于b的不等式,解出即可.

解答 解:(1)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
当a>1时,lna>0,当x∈(0,+∞)时,2x>0,ax>1,∴ax-1>0,
所以f'(x)>0,故函数f(x)在(0,+∞)上单调递增;
当0<a<1时,lna<0,当x∈(0,+∞)时,2x>0,ax<1,∴ax-1<0,
所以f'(x)>0,故函数f(x)在(0,+∞)上单调递增,
综上,f(x)在(0,+∞)上单调递增,
(2)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
①当x>0时,由a>1,可知ax-1>0,lna>0,∴f'(x)>0;
②当x<0时,由a>1,可知ax-1<0,lna>0,∴f'(x)<0;
③当x=0时,f'(x)=0,∴f(x)在[-1,0]上递减,在[0,1]上递增,
∴当x∈[-1,1]时,f(x)min=f(0)=1-b,
若存在x0∈[-1,1],使得f(x0)≤e-1,
即f(x)min≤e-1即可,故1-b≤e-1,
解得:b≥2-e.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有12.5斛.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=cos(2x+φ)为R上的偶函数,则φ的值可以是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x,y满足条件$\left\{\begin{array}{l}1≤x+y≤3\\-1≤x-y≤1\end{array}\right.$
(1)求2x-y的最小值;
(2)求x2+y2的最小值;
(3)求$\frac{y+1}{x+1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列求导运算错误的是(  )
A.(x2+4)′=2x+4B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(cosx)′=-sinxD.${({\frac{1}{x}})^′}=-\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow a$=(-2,2),$\overrightarrow b$=(1,0),若向量$\overrightarrow c$=(1,-2)使$\overrightarrow a$-λ$\overrightarrow b$共线,则λ=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆M经过三点A(0,$\sqrt{3}$),B(6,$\sqrt{3}$),C(3,4$\sqrt{3}$),且交y轴于E、F两点,则|EF|的值为(  )
A.2$\sqrt{3}$B.3C.4$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用秦九韶算法求多项式f(x)=9x6+7x5+3x4+2x2-5,当x=4时的值时,先算的是(  )
A.4×4=16B.9×4=36C.4×4×4=64D.9×4+7=43

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a、b、c.
(1)若a、b、c成等比数列,且$cosB=\frac{3}{5}$,求cotA+cotC的值;
(2)若A、B、C成等差数列,且b=2,求△ABC 的周长l的最大值.

查看答案和解析>>

同步练习册答案