精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,CC1=4,M是棱CC1上的一点.
(1)求证:BC⊥AM;
(2)若N是AB的中点,且CN∥平面AB1M,求CM的长.
考点:直线与平面平行的判定,直线与平面垂直的性质
专题:空间位置关系与距离
分析:(1)由线面垂直得BC⊥C1C,又BC⊥AC,从而BC⊥平面ACC1A1,由此能证明BC⊥AM.
(2)取AB1的中点P,连接MP,NP,由三角形中位线定理得NP∥BB1,从而得到PNCM是平行四边形,由此能求出CM的长.
解答: (1)证明:∵ABC-A1B1C1为直三棱柱,
∴C1C⊥平面ABC,∴BC⊥C1C,
又BC⊥AC,∴BC⊥平面ACC1A1
∵AM在平面ACC1A1上,∴BC⊥AM.
(2)解:取AB1的中点P,连接MP,NP,
∵P为AB1中点,N为AB中点,
∴NP为△ABB1的中位线,∴NP∥BB1
又∵C1C,B1B都是直三棱柱的棱,∴C1C∥B1B,∴MC∥B1B,
∴NP∥CM,∴NPCM共面,
又∵CN∥平面AB1M,∴CN
.
MP,∴PNCM是平行四边形,
∴CM=NP=
1
2
BB1=
1
2
CC1=
1
2
×4=2
点评:本小题线线平行、直线与平面的平行、线面所成角、探索性问题等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
OA
|=1,|
OB
|=
3
OA
OB
=0,点C在∠AOB内,且C(
3
4
3
4
),设
OC
=m
OA
+n
OB
(m,n∈R),则
m
n
的值为(  )
A、
1
3
B、3
C、
3
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
x|x|
16
+
y|y|
9
=-1 的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(|x|)的最大值3
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)由方程
x|x|
16
+
y|y|
9
=1确定.
其中所有正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1-ax)ln(x+1)-bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.
(1)求常数b的值;
(2)当0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围;
(3)求证:(
10001
10000
10000.4<e<(
1001
1000
1000.5

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
4tan12.5°
1-tan212.5°
,b=sin85°-
3
cos85°,c=2(sin47°sin66°-sin24°sin43°)则a、b、c的大小关系是(  )
A、b>c>a
B、a>b>c
C、b>a>c
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人参加英语口语考试,已知在备选的10道试题中,甲能答对其中的6道,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)若一次考试中甲答对的题数为X,求X的概率分布和均值EX;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是(  )
A、
1
9
B、
1
6
C、
1
18
D、
1
12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,
M是线段EF的中点.
(1)求证:AM∥平面BDE
(2)求证:DM⊥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
x
1+2x

(Ⅰ)求证:f(x)在区间(0,+∞)上单调递增;
(Ⅱ)若f[x(3x-2)]<-
1
3
,求实数x的取值范围.

查看答案和解析>>

同步练习册答案