精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg(x+1).
(Ⅰ)若0<f(1-2x)-f(x)<1,求x的取值范围;
(Ⅱ)若g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x).求当x∈[1,2]时,函数y=g(x)的解析式.
考点:对数函数图象与性质的综合应用
专题:计算题,函数的性质及应用
分析:(Ⅰ)求出具体不等式,即可求x的取值范围;
(Ⅱ)y=g(x)=g(x-2)=g(2-x)=f(2-x)=lg(3-x).
解答: 解:(Ⅰ) f(1-2x)=lg(2-2x)
2-2x>0
x+1>0
,得-1<x<1.
由0<f(1-2x)-f(x)<1得0<lg
2-2x
x+1
<1,
∴1<
2-2x
x+1
<10  
∵x+1>0,∴x+1<2-2x<10x+10,∴-
2
3
<x<
1
3

∵-1<x<1,∴-
2
3
<x<
1
3

(Ⅱ)当x∈[1,2]时,2-x∈[0,1],因此y=g(x)=g(x-2)=g(2-x)=f(2-x)=lg(3-x)
当x∈[1,2]时,函数y=g(x)的解析式为g(x)=lg(3-x).
点评:本题考查了利用函数的周期性,奇偶性求函数解析式,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(1,0),
b
=(
1
2
1
2
),给出下列四个结论:①|
a
|=|
b
|;②
a
b
=
2
2
;③
a
-
b
b
垂直;④
a
b
,其中真命题的序号是(  )
A、①B、③C、①④D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
a1
1b
,若向量
-2
1
在矩阵M的交换下得到向量
1
2

(Ⅰ)求矩阵M;
(Ⅱ)矩阵N=
10
21
,求直线x+y+1=0在矩阵NM的对应变换作用下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1-sin
C
2

(1)求sinC的值;
(2)若a2+b2=4(a+b)-8,求三角形三边a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面交棱C1D1于N点,
(Ⅰ)求证:四边形A1MCN为平行四边形;
(Ⅱ)求直线CD1与平面A1MCN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

公车私用、超编配车等现象一直饱受诟病,省机关事务管理局认真贯彻落实党中央、国务院有关公务用车配备使用管理办法,积极推进公务用车制度改革.某机关单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.为配合用车制度对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5,该地区汽车限行规定如下:
车尾号0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
现将汽车日出车频率理解为日出车概率,且A,B两车出车情况相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:
到班级宣传整理、打包衣物总计
20人30人50人
(Ⅰ)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?
(Ⅱ)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用X表示所选志愿者中的女生人数,写出随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,前n项和为Sn,S5=20,a1,a3,a7成等比数列,数列{
1
anan+1
}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值;
(3)设cn=(1-
Tn
Tn+1
)•
1
Tn+1
,求证:c1+c2+c3+…+cn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:y+
1
2
x+1=0
(1)求直线l1的斜率.
(2)若直线l2垂直于l1并经过点M(1,-2)求直线l2的方程.

查看答案和解析>>

同步练习册答案