精英家教网 > 高中数学 > 题目详情
11.方程$\frac{{x}^{2}}{25-k}-\frac{y^2}{9-k}$=1表示焦点在y轴上的椭圆,则实数k的取值范围是(  )
A.(17,25)B.(9,25)C.(8,25)D.(9,17)

分析 由$\frac{{x}^{2}}{25-k}+\frac{{y}^{2}}{k-9}=1$,根据椭圆焦点在y轴上,列方程组即可求得k的取值范围.

解答 解:由椭圆的方程:$\frac{{x}^{2}}{25-k}+\frac{{y}^{2}}{k-9}=1$,
可知:$\left\{\begin{array}{l}{-9+k>0}\\{25-k>0}\\{k-9>25-k}\end{array}\right.$,解得:17<k<25,
实数k的取值范围(17,25),
故选A.

点评 本题考查椭圆的标准方程,椭圆的焦点位置,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}x+2,x≤a\\{x^2},x>a\end{array}\right.$若存在实数b,使函数g(x)=f(x)-b没有零点,则a的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线C:y2=4x,过焦点F作与x轴垂直的直线l1,C上任意一点P(x0,y0)(y0≠0)处的切线为l,l与l1交于M,l与准线交于N,则$\frac{MF}{NF}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果方程$\frac{x^2}{2-m}$+$\frac{y^2}{m+1}$=1表示焦点在x轴上的椭圆,那么实数m的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,-1)C.(-1,$\frac{1}{2}$)D.(-∞,-1)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=f(x)的图象与y=10x的图象关于直线y=x对称,则f(3)+f($\frac{10}{3}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某种产品的广告费用支出x万元与销售额y万元之间有如图的对应数据:
x24568
y3030505070
(Ⅰ)画出上表数据的散点图;
(Ⅱ)根据上表提供的数据,求出y关于x的线性回归方程;
(Ⅲ)据此估计广告费用为10万元时,所得的销售收入.
(参考数值:$\sum_{i=1}^5{{x_i}^2}=145$,$\sum_{i=1}^5{{x_i}{y_i}}=1270$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5+a6(2x-1)6则a1+a3+a5=-$\frac{63}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且其离心率为$\frac{\sqrt{2}}{2}$,F1、F2分别为椭圆C的左、右焦点.设直线l:y=kx+m与椭圆C相交于A,B两点,O为坐标原点.
(I)求椭圆C的标准方程;
(II)当m=-2时,求△OAB的面积的最大值;
(III)以线段OA,OB为邻边作平行四边形OAPB,若点Q在椭圆C上,且满足$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第第1次第2次第3次第4次≥5次
收费比例10.950.900.850.80
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第第1次第2次第3次第4次第5次
频数60201055
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.

查看答案和解析>>

同步练习册答案