精英家教网 > 高中数学 > 题目详情
20.△ABC内角A、B、C所对的边分别为a、b、c,已知向量$\overrightarrow m=(a+c,b-a)$,$\overrightarrow n=(a-c,b)$,且$\overrightarrow m⊥\overrightarrow n$,则sinA+sinB的最大值是$\sqrt{3}$.

分析 由向量垂直列方程得出a,b,c的关系,利用余弦定理解出C,用A表示出B,使用三角函数的恒等变换化简sinA+sinB得出最大值.

解答 解:∵$\overrightarrow{m}⊥\overrightarrow{n}$,∴(a+c)(a-c)+b(b-a)=0,即a2+b2-c2=ab.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{1}{2}$.
∴C=$\frac{π}{3}$.
∴B=$\frac{2π}{3}-A$.
∴sinA+sinB=sinA+sin($\frac{2π}{3}-A$)=$\frac{3}{2}sinA$+$\frac{\sqrt{3}}{2}cosA$=$\sqrt{3}$sin(A+$\frac{π}{6}$).
∵0$<A<\frac{2π}{3}$,∴$\frac{π}{6}<$A+$\frac{π}{6}$<$\frac{5π}{6}$.
∴当A+$\frac{π}{6}$=$\frac{π}{2}$时,sinA+sinB取得最大值$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的垂直与数量积的关系,余弦定理,三角函数的恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A(2,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C右焦点的直线l与椭圆C交于不同的两点M,N,且S△AMN=$\frac{6\sqrt{2}}{7}$,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,l,3},B={x|x2-3x=0},则A∩B=(  )
A.{0}B.{0,1}C.{0,3}D.{0,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,己知椭圆$\frac{x^2}{2}+{y^2}$=1的右焦点F,直线x=-2,过F的直线与椭圆交于A、B两点(AB与x轴不垂直),线段的垂直平分线分别交直线L和AB于点P、C.若PC=2AB,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班有男、女优秀少先队员各2名,现需选出2名优秀少先队员到社区做公益宣传活动,则选出的两名队员性别相同的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的长轴和短轴的长、顶点和焦点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,直线l:y=x+2与以原点O为圆心,椭圆的短半轴长为半径的圆O相切.
(1)求椭圆C的方程;
(2)设椭圆C与直线y=kx(k>1)在第一象限的交点为A,B($\sqrt{2}$,1),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\sqrt{6}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-1|-|x+2|.
(1)求证:-3≤f(x)≤3;
(2)求不等式:f(x)≥x2-2x-5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=ax+2-$\frac{2}{3}$(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=logn(x2-mx+4)的最大值等于-1.

查看答案和解析>>

同步练习册答案