【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).
(1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.
(2)如果有触礁的危险,这艘海轮在处改变航向为东偏南()方向航行,求的最小值.
附:
【答案】(1)海轮有触礁的危险;(2)15°
【解析】试题分析:(1)海轮不改变航向,有没有触礁的危险,应看点到直线的距离与的大小。所以过点作直线的垂线,交直线于点.先由条件在点处测得小岛位于北偏东,得,在点处测得小岛在北偏东,得,所以。∴.
求的三内角的,可得。在中,求得 .因为,∴海轮由触礁的危险. (2)延长至,使。在中求,即为所求。由(1)知.所以.在中求得.在中求. ∵,∴.所以, ∴. 所以海轮应按东偏南15°的方向航行.
试题解析:解:(1)如图1,过点作直线的垂线,交直线于点.
由已知得, , ,
∴.
∴在中, .
又,∴海轮由触礁的危险.
(2)如图2,延长至,使,故.
由(1)得.
∴.
∵,∴.
即,∴ .
故海轮应按东偏南15°的方向航行.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
近视度数 | 0﹣100 | 100﹣200 | 200﹣300 | 300﹣400 | 400以上 |
学生频数 | 30 | 40 | 20 | 10 | 0 |
将近视程度由低到高分为4个等级:当近视度数在0﹣100时,称为不近视,记作0;当近视度数在100﹣200时,称为轻度近视,记作1;当近视度数在200﹣400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(1)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(2)设a=0.0024,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(3)把频率近似地看成概率,用随机变量X,Y分别表示高二、高三年级学生的近视程度,若EX=EY,求b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列三个类比结论.
①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn;
②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;
③(a+b)2=a2+2ab+b2与( + )2类比,则有( + )2= 2+2 + 2;
其中结论正确的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.
(1)证明:AC⊥D1E;
(2)求DE与平面AD1E所成角的正弦值;
(3)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体EF﹣ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(Ⅰ)求证:AC⊥FB
(Ⅱ)求二面角E﹣FB﹣C的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com