精英家教网 > 高中数学 > 题目详情
1.如图所示,是一个奖杯的三视图(单位:cm),计算这个奖杯的体积.

分析 由已知中的三视图可得:该几何体是一个棱台,棱柱,球的组合体,累加三个几何体的体积,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个棱台,棱柱,球的组合体,
故体积V=$\frac{1}{3}$(152+15×11+112)×5+6×8×18+$\frac{4}{3}π•{3}^{3}$=$\frac{5147}{3}$+36π

点评 本题考查的知识点是棱台,棱柱,球的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.计算cos275°-cos15°sin105°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=2x+a2x-2a的零点在区间(0,1)上,则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.($\frac{1}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|-2≤x<5},B={x|2<x≤7},则A∩B=(  )
A.{x|-2<x<5}B.{x|2<x<5}C.{x|2≤x≤7}D.{x|-2≤x≤7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线的离心率为$\frac{\sqrt{7}}{2}$,且其顶点到其渐近线的距离为$\frac{2\sqrt{21}}{7}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1
C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1或$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1或$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.记A=$\left\{{\left.x\right|y=\sqrt{2-\frac{x+3}{x+1}}}\right\}$,B={x|(x-a-1)(2a-x)>0}(a<1).
(1)求A;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,点M、N、E分别为A1B、B1C1、A1B1上的中点.
(Ⅰ)求证:平面MNE∥平面ACC1A1
(Ⅱ)若AB=AC=AA1=2,求证:平面BMC⊥平面AMC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=ln(1+x)+mln(1-x)是偶函数,则(  )
A.m=1,且f(x)在(0,1)上是增函数B.m=1,且f(x)在(0,1)上是减函数
C.m=-1,且f(x)在(0,1)上是增函数D.m=-1,且f(x)在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x-a)lnx,(a≥0).
(1)当a=0时,若直线y=2x+m与函数y=f(x)的图象相切,求m的值;
(2)若f(x)在[1,2]上是单调减函数,求a的最小值.

查看答案和解析>>

同步练习册答案