精英家教网 > 高中数学 > 题目详情
6.计算cos275°-cos15°sin105°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$

分析 利用诱导公式和两角和与差的正弦进行解答.

解答 解:cos275°-cos15°sin105°
=cos75°sin15°-sin75°cos15°
=sin(15°-75°)
=-sin60°
=-$\frac{\sqrt{3}}{2}$.
故选:C.

点评 本题主要考查了诱导公式,两角和与差的正弦以及特殊角的三角函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.有一个容量为50的样本,数据的分组及各组的频数如下:[10,20)3,[20,30)8,[30,40)9,[40,50)11,[50,60)10,[60,70)5,[70,80)4.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)根据频率分布直方图计算该样本的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C1与双曲线C2有相同的焦点F1、F2,点P是C1与C2的一个公共点,△PF1F2是以一个以PF1为底的等腰三角形,|PF1|=4,C1的离心率为$\frac{3}{7}$,则C2的离心率是(  )
A.2B.3C.$2\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-$\frac{1}{x}$.
(1)利用定义证明:函数f(x)在区间(0,+∞)上为增函数;
(2)当x∈(0,1]时,t•f(2x)≥2x-1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,左准线l1:x=-$\frac{a^2}{c}$和右准线l2:x=$\frac{a^2}{c}$分别与x轴相交于A、B两点,且F1、F2恰好为线段AB的三等分点.
(1)求椭圆C的离心率;
(2)过点D(-$\sqrt{3}$,0)作直线l与椭圆相交于P、Q两点,且满足$\overrightarrow{PD}$=2$\overrightarrow{DQ}$,当△OPQ的面积最大时(O为坐标原点),求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\sqrt{3}$sin2x+2sin(${\frac{π}{4}$+x)cos(${\frac{π}{4}$+x),则f(x)在x∈[0,$\frac{π}{2}}$]上的最大值与最小值之差为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若关于x的不等式|2x+5|+|2x-1|-t≥0的解集为R.
(1)求实数t的最大值s;
(2)若正实数a,b满足4a+5b=s,求y=$\frac{1}{a+2b}$+$\frac{4}{3a+3b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(  )
A.90B.100C.145D.190

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,是一个奖杯的三视图(单位:cm),计算这个奖杯的体积.

查看答案和解析>>

同步练习册答案