19£®ÉèÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{r}^{2}-{a}^{2}}$=1µÄ½¹µãÔÚxÖáÉÏ£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬µãPÊÇÍÖÔ²ÔÚµÚÒ»ÏóÏÞÄڵĵ㣬ֱÏßF2P½»yÖáÓëµãQ£¬
£¨¢ñ£©µ±r=1ʱ£¬
£¨i£©ÈôÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨ii£©µ±µãPÔÚÖ±Ïßx+y=lÉÏʱ£¬ÇóÖ±ÏßF1PÓëF1QµÄ¼Ð½Ç£»
£¨¢ò£©µ±r=r0ʱ£¬Èô×ÜÓÐF1P¡ÍF1Q£¬²ÂÏ룺µ±a±ä»¯Ê±£¬µãPÊÇ·ñÔÚij¶¨Ö±ÏßÉÏ£¬ÈôÊÇд³ö¸ÃÖ±Ïß·½³Ì£¨²»±ØÇó½â¹ý³Ì£©£®

·ÖÎö £¨¢ñ£©£¨i£©£¬¸ù¾ÝÍÖÔ²µÄÀëÐÄÂÊ£¬ÒÔ¼°b2=1-a2£¬¼´¿ÉÇó³öÍÖÔ²EµÄ·½³Ì£¬
£¨ii£©ÉèP£¨x0£¬y0£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐc$\sqrt{2{a}^{2}-1}$£®ÀûÓÃбÂʵļÆË㹫ʽºÍµãбʽ¼´¿ÉµÃ³öÖ±ÏßF1PµÄбÂÊ£¬Ö±ÏßF2PµÄ·½³ÌΪбÂÊ£¬¸ù¾ÝбÂʳ˻ýµÈÓÚ-1¼´¿ÉÇó³ö¼Ð½Ç£¬
£¨¢ò£©ÓÉ£¨ii£©¼´¿ÉÇó³ö¹ýµãPΪ¶¨Ö±Ïߣ¬·½³ÌΪx+y=r0£®

½â´ð ½â£º£¨¢ñ£©£¨i£©£©ÒÀÌâÒâb2=1-a2£¬c=$\sqrt{2{a}^{2}-1}$£¬$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬½âµÃa2=$\frac{4}{5}$£¬b2=$\frac{1}{5}$£¬
ËùÒÔÍÖÔ²EµÄ·½³ÌΪ$\frac{5{x}^{2}}{4}$+5y2=1£»
£¨ii£©ÉèP£¨x0£¬y0£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐc=$\sqrt{2{a}^{2}-1}$£¬ÓÉÌâÉèÖªx0¡Ùc£¬
½«Ö±Ïßy=1-x´úÈëÍÖÔ²EµÄ·½³Ì£¬ÓÉÓÚµãPÊÇÍÖÔ²ÔÚµÚÒ»ÏóÏÞÄڵĵ㣬½âµÃx0=a2£¬y0=1-a2£¬
ÔòÖ±ÏßF1PµÄбÂÊΪ$\frac{{y}_{0}}{{x}_{0}+c}$£¬Ö±ÏßF2PµÄбÂÊΪ$\frac{{y}_{0}}{{x}_{0}-c}$£¬
Ö±ÏßF2PµÄ·½³ÌΪy=$\frac{{y}_{0}}{{x}_{0}-c}$£¨x-c£©£¬µ±x=0ʱ£¬y=$\frac{c{y}_{0}}{c-{x}_{0}}$
QµãµÄ×ø±êΪ£¨0£¬$\frac{c{y}_{0}}{c-{x}_{0}}$£©£¬
ËùÒÔÖ±ÏßF1QµÄбÂÊΪ$\frac{{y}_{0}}{c-{x}_{0}}$£¬
ËùÒÔ$\frac{{y}_{0}}{{x}_{0}+c}$•$\frac{{y}_{0}}{c-{x}_{0}}$=-1£¬
ËùÒÔ  F1P¡ÍF1Q£¬
ËùÒÔÖ±ÏßF1PÓëF1QµÄ¼Ð½ÇΪ90¡ã£»
£¨¢ò£©¹ýµãPΪ¶¨Ö±Ïߣ¬·½³ÌΪx+y=r0£¬
ÀíÓÉÈçÏ£º
ÓÉ£¨ii£©¿ÉÖª£¬F1P¡ÍF1Q£¬
¡à$\frac{{y}_{0}}{{x}_{0}+c}$•$\frac{{y}_{0}}{c-{x}_{0}}$=-1£¬
»¯¼òµÃ y02=x02-£¨2a2-r0£©£®
ÒòΪ PΪÍÖÔ²EÉϵÚÒ»ÏóÏÞÄڵĵ㣬½«ÉÏʽ´úÈë$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{r}^{2}-{a}^{2}}$=1
µÃx0=a2£¬y0=r0-a2£¬
ËùÒÔx0+y0=r0£¬
ËùÒÔ·½³ÌΪx+y=r0

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°Æä¼¸ºÎÐÔÖÊ£¬Ö±ÏߺÍÖ±Ïß¡¢Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµµÈ»ù´¡ÖªÊ¶ºÍ»ù±¾¼¼ÄÜ£¬¿¼²éÁËÊýÐνáºÏµÄ˼Ïë¡¢ÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®´üÖÐ×°ÓÐÐÎ×´¡¢´óСÍêÈ«ÏàͬµÄÎå¸öƹÅÒÇò£¬·Ö±ð±êÓÐÊý×Ö1£¬2£¬3£¬4£¬5£®ÏÖÿ´Î´ÓÖÐÈÎÒâ³éȡһ¸ö£¬È¡³öºó²»ÔٷŻأ®
£¨¢ñ£©Èô³éÈ¡Èý´Î£¬ÇóǰÁ½¸öƹÅÒÇòËù±êÊý×ÖÖ®ºÍΪżÊýµÄÌõ¼þÏ£¬µÚÈý¸öƹÅÒÇòÎªÆæÊýµÄ¸ÅÂÊ£»
£¨¢ò£©Èô²»¶Ï³éÈ¡£¬Ö±ÖÁÈ¡³ö±êÓÐżÊýµÄƹÅÒÇòΪֹ£¬Éè³éÈ¡´ÎÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¨1£©Ëùʾ£¬ÒÔÏß¶ÎBDΪֱ¾¶µÄÔ²¾­¹ýA£¬CÁ½µã£¬ÇÒAB=BC=1£¬BD=2£¬ÑÓ³¤DA£¬CB½»ÓÚµãP£¬½«¡÷PABÑØABÕÛÆð£¬Ê¹µãPÖÁµãP¡äλÖõõ½Èçͼ2ËùʾµÄ¿Õ¼äͼÐΣ¬ÆäÖеãP¡äÔÚÆ½ÃæABCDÄÚµÄÉäӰǡΪÏß¶ÎADµÄÖеãQ£¬ÈôÏß¶ÎP¡äB£¬P¡äCµÄÖеã·Ö±ðΪE£¬F£®
£¨1£©Ö¤Ã÷£ºA£¬D£¬E£¬FËĵ㲻¹²Ã棻
£¨2£©Ç󼸺ÎÌåP¡äADEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Áù°²ÊÐÓá°10.0·ÖÖÆ¡±µ÷²éÊÐÃñµÄÐÒ¸£¶È£®ÏÖ´Óµ÷²éÈËȺÖÐËæ»ú³éÈ¡16ÃûÊÐÃñ£¬¼Ç¼ÁËËûÃǵÄÐÒ¸£¶È·ÖÊý£¨ÒÔСÊýµãǰµÄһλÊý×ÖΪ¾¥£¬Ð¡ÊýµãºóµÄһλÊý×ÖΪҶ£©

£¨1£©ÈôÐÒ¸£¶È²»µÍÓÚ9£¬Ôò³Æ¸ÃÈ˵ÄÐÒ¸£¶ÈΪ¡°¼«ÐÒ¸£¡±£®Çó´ÓÕâ16ÈËÖÐËæ»úѡȡ3ÈË£¬ÖÁÉÙÓÐ1ÈËÊÇ¡°¼«ÐÒ¸£¡±µÄ¸ÅÂÊ£»
£¨2£©ÒÔÕâ16È˵ÄÑù±¾Êý¾ÝÀ´¹À¼ÆÕû¸öÉçÇøµÄ×ÜÌåÊý¾Ý£¬Èô´Ó¸ÃÉçÇø£¨ÈËÊýºÜ¶à£©ÈÎÑ¡3ÈË£¬¼Ç¦Î±íʾ³éµ½¡°¼«ÐÒ¸£¡±µÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÔòÕâ¸ö¼¸ºÎÌåµÄ±íÃæ»ýΪ18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª10µÄÕý·½ÐΣ¬ÈôPD¡ÍÆ½ÃæABCD£¬PD=AB£®
£¨I£©ÇóÖ¤£ºAC¡ÍPB£®
£¨¢ò£©Çó¶þÃæ½ÇA-PB-DµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=lnx-x-lna£¬aΪ³£Êý£®
£¨1£©Èôº¯Êýf£¨x£©ÓÐÁ½¸öÁãµãx1£¬x2£¬ÇÒx1£¼x2£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷£º$\frac{x_1}{x_2}$µÄÖµËæaµÄÖµÔö´ó¶øÔö´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬º¯Êýf£¨x£©µÄͼÏóÔÚPµã´¦µÄÇÐÏß·½³ÌÊÇy=-2x+17£¬ÈôµãPµÄºá×ø±êÊÇ5£¬Ôòf£¨5£©+f¡ä£¨5£©=£¨¡¡¡¡£©
A£®5B£®-5C£®10D£®-10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄê°²»ÕÁù°²Ò»ÖиßÒ»ÉϹúÇì×÷Òµ¶þÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑÖªº¯Êý£¬£¬ÔòµÄ½âÎöʽÊÇ_______.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸