精英家教网 > 高中数学 > 题目详情
8.已知曲线C1:y2=tx (y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+l-1也相切,则t的值为(  )
A.4e2B.4eC.$\frac{e^x}{4}$D.$\frac{e}{4}$

分析 求出y=$\sqrt{tx}$的导数,求出斜率,由点斜式方程可得切线的方程,设切点为(m,n),求出y=ex+1-1的导数,可得切线的斜率,得到t的方程,解方程可得.

解答 解:曲线C1:y2=tx(y>0,t>0),即有y=$\sqrt{tx}$,
y′=$\sqrt{t}$•$\frac{1}{2\sqrt{x}}$,
在点M($\frac{4}{t}$,2)处的切线斜率为$\sqrt{t}$•$\frac{1}{2\sqrt{\frac{4}{t}}}$=$\frac{t}{4}$,
可得切线方程为y-2=$\frac{t}{4}$(x-$\frac{4}{t}$),即y=$\frac{t}{4}$x+1,
设切点为(m,n),则曲线C2:y=ex+1-1,
y′=ex+1,em+1=$\frac{t}{4}$,
∴m=ln$\frac{t}{4}$-1,n=m•$\frac{t}{4}$-1,n=em+1-1,
可得(ln$\frac{t}{4}$-1)•$\frac{t}{4}$-1=e${\;}^{ln\frac{t}{4}}$-1,
即有(ln$\frac{t}{4}$-1)•$\frac{t}{4}$=$\frac{t}{4}$,可得$\frac{t}{4}$=e2
即有t=4e2
故选:A.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,注意转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若实数x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,则x-2y的最大值为(  )
A.-9B.-3C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(文)已知是虚数单位,则$\frac{3+i}{1-i}$=(  )
A.1+2iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆$\frac{x^2}{36}+\frac{y^2}{20}=1$的左顶点为A,右焦点为F,点P在椭圆上,且位于第一象限,当△PAF是直角三角形时,S△PAF=(  )
A.$\frac{{25\sqrt{3}}}{4}$或$\frac{20}{3}$B.$\frac{25\sqrt{3}}{2}$或$\frac{50}{3}$C.$\frac{25\sqrt{3}}{4}$或$\frac{10}{3}$D.$\frac{25\sqrt{3}}{2}$或$\frac{20}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{x^2}{5}-\frac{y^2}{4}=1$的离心率为(  )
A.4B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等比数列{an}中,已知a4=8a1,且a1,a2+1,a3成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)求数列{|an-4|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若ab=-2,则a2+b2-1的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y=ax2(a>0)的焦点到准线的距离为2,则a=(  )
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.

(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据:$\sum_{i=1}^{5}{x}_{i}$=25,$\sum_{i=1}^{5}{y}_{i}$=5.36,$\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=0.64
回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案