精英家教网 > 高中数学 > 题目详情
6.小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A=“4 个人去的景点不相同”,事件B=“小赵独自去一个景点”,则P( A|B)=(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

分析 这是求小赵独自去一个景点的前提下,4 个人去的景点不相同的概率,求出相应基本事件的个数,即可得出结论.

解答 解:小赵独自去一个景点,则有3个景点可选,其余3人只能在小赵剩下的3个景点中选择,可能性为3×3×3=27种 
所以小赵独自去一个景点的可能性为4×27=108种
因为4 个人去的景点不相同的可能性为4×3×2×1=24种,
所以P(A|B)=$\frac{24}{108}$=$\frac{2}{9}$.
故选:A.

点评 本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为2000元,设备乙每天的租赁费为3000元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为23000元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数,下列命题:
①函数$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是单纯函数;
②当a>-2时,函数$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是单纯函数;
③若函数f(x)为其定义域内的单纯函数,x1≠x2,则f(x1)≠f(x2);
④若函f(x)数是单纯函数且在其定义域内可导,则在其定义域内一定存在x0使其导数f'(x0)=0.
其中正确的命题为①③.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若$f(x)=cos2x+acos({\frac{π}{2}+x})$在区间$({\frac{π}{6},\frac{π}{2}})$上是增函数,则实数a的取值范围为(  )
A.[-2,+∞)B.(-2,+∞)C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x-2|+2x-3,记f(x)≤-1的解集为M.
(Ⅰ)求M;
(Ⅱ)当x∈M时,证明:x[f(x)]2-x2f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线 Γ:y2=8x 的焦点为 F,准线与 x 轴的交点为K,点 P 在 Γ 上且$|{PK}|=\sqrt{2}|{PF}|$,则△PKF的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从数字1,2,3,4中任取两个不同的数字构成一个两位数,这个两位数大于20的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AD=2,AB=3,AF=$\frac{{3\sqrt{3}}}{2}$,M为EF的中点,则多面体M-ABCD的外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.中国传统文化中不少优美的古诗词很讲究对仗,如“明月松间照,清泉石上流”中明月对清泉同为自然景物,明和清都是形容词,月和泉又都是名词,数学除了具有简洁美、和谐美、奇异美外,也具有和古诗词中对仗类似的对称美.请你判断下面四个选项中,体现数学对称美的是(  )
A.“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{100}$”表示成“$\sum_{k=1}^{100}{\frac{1}{k}}$”
B.平面上所有二次曲线的一般形式均可表示成:Ax2+Bxy+Cy2+Dx+Ey+F=0
C.正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$
D.123456789×9+10=1111111111

查看答案和解析>>

同步练习册答案