精英家教网 > 高中数学 > 题目详情
15.已知矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AD=2,AB=3,AF=$\frac{{3\sqrt{3}}}{2}$,M为EF的中点,则多面体M-ABCD的外接球的表面积为16π.

分析 设球心到平面ABCD的距离为d,利用矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AF=$\frac{{3\sqrt{3}}}{2}$,M为EF的中点,可得M到平面ABCD的距离为$\frac{{3\sqrt{3}}}{2}$,从而R2=($\frac{\sqrt{4+9}}{2}$)2+d2=12+($\frac{{3\sqrt{3}}}{2}$-d)2,求出R2=4,即可求出多面体E-ABCD的外接球的表面积.

解答 解:设球心到平面ABCD的距离为d,
∵矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AF=$\frac{{3\sqrt{3}}}{2}$,M为EF的中点,
∴M到平面ABCD的距离为$\frac{{3\sqrt{3}}}{2}$,
∴R2=($\frac{\sqrt{4+9}}{2}$)2+d2=12+($\frac{{3\sqrt{3}}}{2}$-d)2
∴d=$\frac{\sqrt{3}}{2}$,R2=4,
∴多面体E-ABCD的外接球的表面积为4πR2=16π.
故答案为:16π.

点评 本题考查多面体E-ABCD的外接球的表面积,考查学生的计算能力,正确求出多面体E-ABCD的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}为等差数列,其中a2+a3=8,a5=3a2
(1)求数列{an}的通项公式;
(2)记${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,设{bn}的前n项和为Sn.求最小的正整数n,使得${S_n}>\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A=“4 个人去的景点不相同”,事件B=“小赵独自去一个景点”,则P( A|B)=(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校今年计划招聘女教师x人,男教师y人,若x、y满足$\left\{\begin{array}{l}{2x-y≥5}\\{x-y≤2}\\{x<6}\end{array}\right.$,则该学校今年计划招聘教师最多10人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$P:{x^2}-2x<0,Q:\frac{x+3}{x-1}≤0$,若P真Q假,则x的取值范围是(  )
A.[1,2)B.(1,2)C.(-∞,-3)D.(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知两个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{log_5}({1-x})({x<1})\\-{({x-2})^2}+2({x≥1})\end{array}\right.$,则关于x的方程$f({x+\frac{1}{x}-2})=a$,当1<a<2时实根个数为(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=αx-2-1(α>0且α≠1)的图象恒过的点的坐标是(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},则 A∩B=(  )
A.[1,3]B.(1,3]C.[2,3]D.(2,3]

查看答案和解析>>

同步练习册答案