精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=\left\{\begin{array}{l}{log_5}({1-x})({x<1})\\-{({x-2})^2}+2({x≥1})\end{array}\right.$,则关于x的方程$f({x+\frac{1}{x}-2})=a$,当1<a<2时实根个数为(  )
A.5个B.6个C.7个D.8个

分析 令x+$\frac{1}{x}$-2=t,则f(t)=a,结合f(x)的函数图象可知关于t的方程f(t)=a的解的个数和解的范围,利用t的范围得出关于x的方程x+$\frac{1}{x}$-2=t的解的个数即可得出答案.

解答 解:令x+$\frac{1}{x}$-2=t,则f(t)=a,
做出y=f(x)的函数图象如图所示:

由图象可知:当1<a<2时,关于t的方程f(t)=a有3解.
不妨设3个解分别为t1,t2,t3,且t1<t2<t3
则-24<t1<-4,1<t2<2,2<t3<3,
当x+$\frac{1}{x}$-2=t1,即x2-(2+t1)x+1=0,
∵-24<t1<-4,
∴△=(2+t12-4>0,
∴方程x+$\frac{1}{x}$-2=t1有2解,
同理:方程x+$\frac{1}{x}$-2=t2有2解,x+$\frac{1}{x}$-2=t3有2解,
∴当1<a<2时,关于x的方程$f({x+\frac{1}{x}-2})=a$有6解.
故选B.

点评 本题考查了函数的零点的个数判断与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数,下列命题:
①函数$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是单纯函数;
②当a>-2时,函数$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是单纯函数;
③若函数f(x)为其定义域内的单纯函数,x1≠x2,则f(x1)≠f(x2);
④若函f(x)数是单纯函数且在其定义域内可导,则在其定义域内一定存在x0使其导数f'(x0)=0.
其中正确的命题为①③.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从数字1,2,3,4中任取两个不同的数字构成一个两位数,这个两位数大于20的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AD=2,AB=3,AF=$\frac{{3\sqrt{3}}}{2}$,M为EF的中点,则多面体M-ABCD的外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-2x<0},B={y|y=|x|+1,x∈R},则A∩∁RB=(  )
A.(0,2)B.[1,2)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α是第一象限角,满足$sinα-cosα=\frac{{\sqrt{10}}}{5}$,则cos2α=(  )
A.-$\frac{3}{5}$B.$±\frac{3}{5}$C.$-\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,则g(-8)=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.中国传统文化中不少优美的古诗词很讲究对仗,如“明月松间照,清泉石上流”中明月对清泉同为自然景物,明和清都是形容词,月和泉又都是名词,数学除了具有简洁美、和谐美、奇异美外,也具有和古诗词中对仗类似的对称美.请你判断下面四个选项中,体现数学对称美的是(  )
A.“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{100}$”表示成“$\sum_{k=1}^{100}{\frac{1}{k}}$”
B.平面上所有二次曲线的一般形式均可表示成:Ax2+Bxy+Cy2+Dx+Ey+F=0
C.正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$
D.123456789×9+10=1111111111

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.辗转相除法,又名欧几里得算法,乃求两个正整数之最大公因子的算法.它是已知最古老的算法,在中国则可以追溯至东汉出现的《九章算术》,图中的程序框图所表述的算法就是欧几里得辗转相除法,若输入a=5280,b=12155,则输出的b=55.

查看答案和解析>>

同步练习册答案