| A. | -$\frac{3}{5}$ | B. | $±\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $±\frac{4}{5}$ |
分析 利用同角三角函数的基本关系求得sinα+cosα的值,再利用二倍角的余弦公式求得cos2α的值.
解答 解:∵α是第一象限角,满足$sinα-cosα=\frac{{\sqrt{10}}}{5}$,∴1-2sinαcosα=$\frac{10}{25}$,∴2sinαcosα=$\frac{3}{5}$,
∴sinα+cosα=$\sqrt{{(sinα+cosα)}^{2}}$=$\sqrt{1+2sinαcosα}$=$\frac{2\sqrt{10}}{5}$,
则cos2α=cos2α-sin2α=(cosα+sinα)•(cosα-sinα)=$\frac{2\sqrt{10}}{5}$•(-$\frac{\sqrt{10}}{5}$)=-$\frac{4}{5}$,
故选:C.
点评 本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $α=\frac{π}{4},β=\frac{π}{8}$ | B. | $α=\frac{2π}{3},β=\frac{π}{6}$ | C. | $α=\frac{π}{3},β=\frac{π}{6}$ | D. | $α=\frac{5π}{6},β=\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5个 | B. | 6个 | C. | 7个 | D. | 8个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [kπ-$\frac{11π}{24}$,kπ+$\frac{π}{24}$](k∈Z) | B. | $[kπ+\frac{3π}{8},kπ+\frac{7π}{8}](k∈Z)$ | ||
| C. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}](k∈Z)$ | D. | $[2kπ+\frac{3π}{4},2kπ+\frac{7π}{4}](k∈Z)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com