精英家教网 > 高中数学 > 题目详情
3.某校今年计划招聘女教师x人,男教师y人,若x、y满足$\left\{\begin{array}{l}{2x-y≥5}\\{x-y≤2}\\{x<6}\end{array}\right.$,则该学校今年计划招聘教师最多10人.

分析 作出不等式组对应的平面区域,则目标函数为z=x+y,利用线性规划的知识进行求解即可.

解答 解:设z=x+y,
作出不等式组对应的平面区域如图:
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最大,
此时z最大.但此时z最大值取不到,
由图象当直线经过整点E(5,5)时,z=x+y取得最大值,
代入目标函数z=x+y得z=5+5=10.
即目标函数z=x+y的最大值为10.
故答案为:10.

点评 本题主要考查线性规划的应用问题,根据图象确定最优解,要根据整点问题进行调整,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=$\frac{{2\sqrt{5}}}{5}$.
(1)求cosβ的值;
(2)若点A的横坐标为$\frac{5}{13}$,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若$f(x)=cos2x+acos({\frac{π}{2}+x})$在区间$({\frac{π}{6},\frac{π}{2}})$上是增函数,则实数a的取值范围为(  )
A.[-2,+∞)B.(-2,+∞)C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线 Γ:y2=8x 的焦点为 F,准线与 x 轴的交点为K,点 P 在 Γ 上且$|{PK}|=\sqrt{2}|{PF}|$,则△PKF的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从数字1,2,3,4中任取两个不同的数字构成一个两位数,这个两位数大于20的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xoy中,直线l经过点P(-1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2-6ρcosθ+1=0.
(Ⅰ)若直线l与曲线C有公共点,求α的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AD=2,AB=3,AF=$\frac{{3\sqrt{3}}}{2}$,M为EF的中点,则多面体M-ABCD的外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α是第一象限角,满足$sinα-cosα=\frac{{\sqrt{10}}}{5}$,则cos2α=(  )
A.-$\frac{3}{5}$B.$±\frac{3}{5}$C.$-\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-1,(x<1)}\\{{x}^{3}-9{x}^{2}+24x-16,(x≥1)}\end{array}\right.$,则关于x的方程f(x)=a(a为实数)根个数不可能为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案