精英家教网 > 高中数学 > 题目详情
8.在直角坐标系xoy中,直线l经过点P(-1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2-6ρcosθ+1=0.
(Ⅰ)若直线l与曲线C有公共点,求α的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

分析 (Ⅰ)由直线l经过点P(-1,0),且倾斜角为α,可得直线l的参数方程,利用互化公式可得C的直角坐标方程.由直线l与曲线C有公共点,可得△=64cos2α-32≥0,解出即可得出的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,利用参数方程为$\left\{{\begin{array}{l}{x=3+2\sqrt{2}cosθ}\\{y=2\sqrt{2}sinθ}\end{array}}\right.$(θ为参数),结合三角函数知识求x+y的取值范围.

解答 解:(Ⅰ)∵曲线C的极坐标方程为ρ2-6ρcosθ+1=0,∴曲线C的直角坐标方程为x2+y2-6x+1=0
∵直线l经过点P(-1,0),其倾斜角为α,∴直线l的参数方程为$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数)
将$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$,代入x2+y2-6x+1=0整理得t2-8tcosα+8=0
∵直线l与曲线C有公共点,∴△=64cos2α-32≥0即$cosα≥\frac{{\sqrt{2}}}{2}$或$cosα≤-\frac{{\sqrt{2}}}{2}$
∵α∈[0,π)∴α的取值范围是$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$…(5分)
(Ⅱ)曲线C的直角坐标方程为x2+y2-6x+1=0可化为(x-3)2+y2=8
其参数方程为$\left\{{\begin{array}{l}{x=3+2\sqrt{2}cosθ}\\{y=2\sqrt{2}sinθ}\end{array}}\right.$(θ为参数)  …(7分)
∵M(x,y)为曲线C上任意一点,∴$x+y=3+2\sqrt{2}cosθ+2\sqrt{2}sinθ=3+4sin(θ+\frac{π}{4})$
∴x+y的取值范围是[-1,7].…(10分)

点评 本题考查了极坐标化为直角坐标方程、参数方程的运用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.y=cos(x+1)图象上相邻的最高点和最低点之间的距离是(  )
A.$\sqrt{{π^2}+4}$B.πC.2D.$\sqrt{{π^2}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD⊥平面SAB;
(Ⅱ)求四棱锥S-ABCD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}{x^2}+({1-a})x-alnx$.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<a时,f(x+a)<f(a-x);
(3)设x1,x2是f(x)的两个零点,证明:f′(${\frac{{{x_1}+{x_2}}}{2}}$)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校今年计划招聘女教师x人,男教师y人,若x、y满足$\left\{\begin{array}{l}{2x-y≥5}\\{x-y≤2}\\{x<6}\end{array}\right.$,则该学校今年计划招聘教师最多10人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}是等差数列,其前n项和为Sn,若a2a3a4=21,且$\frac{15}{{{S_3}{S_5}}}+\frac{35}{{{S_5}{S_7}}}+\frac{21}{{{S_7}{S_3}}}=\frac{3}{7}$.则a3等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知两个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=$\frac{2{i}^{2}+4}{i+1}$的虚部为(  )
A.-3B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z 满足z(1+i)=-2i(i为虚数单位),$\overline z$是z 的共轭复数,则$\overline z$•z=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

同步练习册答案