精英家教网 > 高中数学 > 题目详情
17.复数z=$\frac{2{i}^{2}+4}{i+1}$的虚部为(  )
A.-3B.-1C.1D.2

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=$\frac{2{i}^{2}+4}{i+1}$=$\frac{2}{1+i}=\frac{2(1-i)}{(1+i)(1-i)}=1-i$,
∴复数z=$\frac{2{i}^{2}+4}{i+1}$的虚部为-1.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={x∈N|0≤x≤5},B={x|2-x<0},则A∩(∁RB)=(  )
A.{1}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xoy中,直线l经过点P(-1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2-6ρcosθ+1=0.
(Ⅰ)若直线l与曲线C有公共点,求α的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}\right.$满足条件:对于?x1∈R,且x1≠0,?唯一的x2∈R且x1≠x2,使得f(x1)=f(x2).当f(2a)=f(3b)成立时,则实数a+b=(  )
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α是第一象限角,满足$sinα-cosα=\frac{{\sqrt{10}}}{5}$,则cos2α=(  )
A.-$\frac{3}{5}$B.$±\frac{3}{5}$C.$-\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的数学期望为2,则$\frac{2}{a}+\frac{1}{3b}$的最小值为(  )
A.$\frac{32}{3}$B.$\frac{28}{3}$C.$\frac{16}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.据统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学学习时间x与数学成绩y进行数据收集如表:
x1516181922
y10298115115120
由表中样本数据求回归直线方程$\stackrel{∧}{y}$=bx+a,则点(a,b)与直线x+18y=110的位置关系为是(  )
A.点在直线左侧B..点在直线右侧C..点在直线上D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x-3<0},B={y|y=2x,x∈[1,2]},则A∩B=(  )
A.B.(1,3)C.[2,3)D.(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{f(x-5)\\;x>2}\\{a{e}^{x}\\;x≤2}\end{array}\right.$,若f(2017)=e2,则a=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

同步练习册答案