| A. | $\frac{32}{3}$ | B. | $\frac{28}{3}$ | C. | $\frac{16}{3}$ | D. | 4 |
分析 由题意可得:3a+2b+0•c=2,即3a+2b=2.a,b,c∈(0,1)),再利用“乘1法”与基本不等式的性质即可得出.
解答 解:由题意可得:3a+2b+0•c=2,即3a+2b=2.a,b,c∈(0,1)),
∴$\frac{2}{a}+\frac{1}{3b}$=$\frac{1}{2}(3a+2b)$$(\frac{2}{a}+\frac{1}{3b})$=$\frac{1}{2}(\frac{20}{3}+\frac{4b}{a}+\frac{a}{b})$$≥\frac{1}{2}$$(\frac{20}{3}+2\sqrt{\frac{4b}{a}•\frac{a}{b}})$=$\frac{16}{3}$,当且仅当a=2b=$\frac{1}{2}$时取等号.
故选:C.
点评 本题考查了数学期望计算公式、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=2sin(2x+\frac{2π}{3})$ | B. | $y=2sin(2x+\frac{5π}{12})$ | C. | $y=2sin(2x-\frac{π}{3})$ | D. | $y=2sin(2x-\frac{π}{12})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com