精英家教网 > 高中数学 > 题目详情
7.已知集合A={x∈N|0≤x≤5},B={x|2-x<0},则A∩(∁RB)=(  )
A.{1}B.{0,1}C.{1,2}D.{0,1,2}

分析 化简集合A、B,根据补集与交集的定义写出运算结果即可.

解答 解:集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},
B={x|2-x<0}={x|x>2},
则∁RB={x|x≤2},
所以A∩(∁RB)={0,1,2}.
故选:D.

点评 本题考查了集合的定义与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.正方体ABCD-A1B1C1D1中,E为AB中点,F为CD1中点.
(1)求证:EF∥平面ADD1A1
(2)求直线EF和平面CDD1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.y=cos(x+1)图象上相邻的最高点和最低点之间的距离是(  )
A.$\sqrt{{π^2}+4}$B.πC.2D.$\sqrt{{π^2}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:
①若m∥l,且m⊥α,则l⊥α;
②若m∥l,且m∥α,则l∥α;
③若α⊥β,γ⊥β,则α∥γ;
④若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n.
错误命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}sin({x+α}),({x≤0})\\ cos({x-β}),({x>0})\end{array}$是偶函数,则下列结论可能成立的是(  )
A.$α=\frac{π}{4},β=\frac{π}{8}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD⊥平面SAB;
(Ⅱ)求四棱锥S-ABCD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}{x^2}+({1-a})x-alnx$.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<a时,f(x+a)<f(a-x);
(3)设x1,x2是f(x)的两个零点,证明:f′(${\frac{{{x_1}+{x_2}}}{2}}$)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=$\frac{2{i}^{2}+4}{i+1}$的虚部为(  )
A.-3B.-1C.1D.2

查看答案和解析>>

同步练习册答案