精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-a|
(Ⅰ)不等式|f(x)-1|≤1的解集为A,且2∈A,3∈A,求a的取值范围;
(Ⅱ)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求正实数a的值.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(Ⅰ)由不等式|f(x)-1|≤1,求得它的解集为A=[a-2,a+2].再根据2∈A,3∈A,可得
a-2≤2≤a+2
a-2≤3≤a+2
,由此求得a的范围.
(Ⅱ)设h(x)=f(2x+a)-2f(x)=
-2a,x≤0
4x-2a,0<x<a
2a,x≥a
,由|h(x)|≤2解得
a-1
2
≤x≤
a+1
2
,根据它与1≤x≤2等价,然后求出a的值.
解答: 解:(Ⅰ)由不等式|f(x)-1|≤1,可得-1≤f(x)-1≤1,即 0≤f(x)≤2,即  0≤|x-a|≤2,
即|x-a|≤2,即 a-2≤x≤a+2,故A=[a-2,a+2].
再根据2∈A,3∈A,可得
a-2≤2≤a+2
a-2≤3≤a+2
,由此求得 1≤a≤2.
(Ⅱ)设h(x)=f(2x+a)-2f(x),则h(x)=
-2a,x≤0
4x-2a,0<x<a
2a,x≥a

 由|h(x)|≤2得
a-1
2
≤x≤
a+1
2

又已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集{x|1≤x≤2},
a-1
2
=1
a+1
2
=2
,∴a=3.
点评:本题主要考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某制药厂研制出一种新型疫苗,经市场调查得知,生产这批疫苗的总成本有以下方面:①每生产1盒疫苗需要原料费30元;②支付全体职工的工资总额由5650元的基本工资和每生产1盒疫苗再支付10元组成;③后期保管的平均费用是每盒(x+
750
x
-60)元(疫苗的日生产量为x盒,50≤x≤200,x∈N*).
(1)把生产每盒疫苗的成本表示为x的函数关系P(x),并求出P(x)的最小值;
(2)如果产品全部卖出,据测算销售额Q(x)(元)关于日产量x盒的函数关系为Q(x)=1180x-
1
30
x3,问:当日产量为多少盒时生产这批疫苗的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

求过P(1,2)且与圆x2+y2-4x=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①命题“若x≠1,则x2-3x+2≠0”的否命题是“若x=1,则x2-3x+2=0”;
②命题“?x∈R,lg(x2+x+1)≥0”是假命题;
③命题“若x=2,则向量
a
=(-x,1)与
b
=(-4,x)共线”的逆否命题是真命题.
其中正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x2-3x+1,
1
2
<x≤1
-
2
3
x+
1
3
,0≤x≤
1
2
和函数g(x)=acos(
π
6
x+
π
3
)-a+1(a>0)
,若存在x1,x2∈[0,1]使得f(x1)=g(x2),则实数a的取值范围是(  )
A、(0,1]
B、[1,2]
C、(0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P、A、B、C为空间中的四点,且
PA
PB
PC
,则“α+β=1”是“A、B、C三点共线”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC内角A,B,C所对的边分别为a,b,c,且b=2,a=c,cosB=
7
8

(1)求a,c的值;
(2)求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=10x-
1
10
+1,x∈R,函数y=f(x)是函数y=g(x)的反函数,求函数y=f(x)的解析式,并写出定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数;q:函数g(x)=loga(x+1)(a>0且a≠1)在(-1,+∞)上是增函数;则¬p成立是q成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案