精英家教网 > 高中数学 > 题目详情
16.已知点P(-1,1)是圆x2+y2=r2上的一点,则该圆的半径为$\sqrt{2}$,该圆在点P处的切线方程是x-y+2=0.

分析 把点P的坐标代入圆的方程,即可求出圆的半径,求出过OP两点直线的斜率,得到过P的切线的斜率,再由直线方程的点斜式得答案.

解答 解:∵P(-1,1)在圆x2+y2=r2上,
∴(-1)2+12=r2,即r=$\sqrt{2}$;
圆x2+y2=r2的圆心坐标为O(0,0),
又P(-1,1),
∴kOP=-1,
则过点P的圆的切线的斜率为1,
∴切线方程为y-1=1×(x+1),即x-y+2=0.
故答案为:$\sqrt{2}$;x-y+2=0.

点评 本题考查了圆的切线方程,考查两直线垂直与斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设正数数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$).
(1)试求a1、a2、a3
(2)猜想通项an,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.二面角α-l-β的大小为$\frac{π}{4}$,直线AB?α,若AB与l所成的角为$\frac{π}{4}$,则AB与β所成角的正弦值=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,焦点与短轴的两顶点的连线与圆x2+y2=$\frac{3}{4}$相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得$\overrightarrow{NA}$•$\overrightarrow{NB}$为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有甲、乙两个坛子,每个坛子装有大小相同的2个白球和2个红球,现在从甲坛子中随机取出2个小球再从乙坛子中随机取出2个小球.
(1)求从两个坛子取的球都是红球的概率;
(2)求取出的4个球既含有白球又含有红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{5}}}{5}$,直线mx+y+1=1恒过椭圆的一个顶点.
(I)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,P为椭圆的右焦点,过F的直线l(l不与坐标轴垂直)交椭圆于A,B两点,C为AB的中点,D为A关于x轴的对称点.
(i)求证:直线OC与过点F且与l垂直的直线的交点在直线x=$\frac{5}{2}$上;
(ii)在x轴上是否存在定点T,使B、D、T三点共线?若存在,求出T点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.2016年春节期间全国流行在微信群发红包,抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组[1,5)[5,9)[9,13)[13,17)[17,21)[21,25)
 频数 3 1711  82
(1)求产生的手气红包的金额不小于9元的频率;
(2)估计手气红包金额的平均数(同一组的数据用该组区间的中值点做代表);
(3)在这50个红包组成的样本中,随机抽取两名手气红包金额在[1,5)∪[21,25]内的幸运者,设其红包金额分别为m,n,求|m-n|>16的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发10个红包,每个红包金额在[1,5]产生.已知在每轮游戏中所产生的10个红包金额的频率分布直方图如图所示.
(Ⅰ)求a的值,并根据频率分布直方图,估计10个红包金额的中位数;
(Ⅱ)以频率分布直方图中的频率作为概率,若甲抢到来自[2,4)中3个红包,求其中一个红包来自[2,3),另2个红包来自[3,4)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P为双曲线右支上的任意一点,若$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为9a,则双曲线的离心率为(  )
A.2B.5C.3D.2或5

查看答案和解析>>

同步练习册答案