精英家教网 > 高中数学 > 题目详情
3.已知在△ABC中,三个内角A,B,C所对的边分别为a,b,c,函数f(x)=cos($\frac{π}{2}$-x)cosx+$\sqrt{3}$sin2x.
(1)求f(x)的最小正周期和最大值,并求出取得最大值时x的取值集合;
(2)若f(A)=$\sqrt{3}$(0<A<$\frac{π}{2}$),三角形的面积S=6$\sqrt{3}$,且b-c=1,求a的值.

分析 (1)已知利用三角函数恒等变换的应用化简可得f(x)=$sin(2x-\frac{π}{3})+\frac{{\sqrt{3}}}{2}$,利用周期公式可求f(x)的最小正周期,利用正弦函数的性质可求最大值及取得最大值时x的取值集合;
(2)由已知,可求$sin(2A-\frac{π}{3})=\frac{{\sqrt{3}}}{2}$,结合范围$0<A<\frac{π}{2}$,可求A,利用三角形面积公式可求bc,结合b-c=1及余弦定理即可得解a的值.

解答 解:(1)由已知得:$f(x)=cos(\frac{π}{2}-x)cosx+\sqrt{3}{sin^2}x$=$\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}(1-cos2x)$=$sin(2x-\frac{π}{3})+\frac{{\sqrt{3}}}{2}$,
故f(x)的最小正周期为T=$\frac{2π}{2}$=π,
故当2x-$\frac{π}{3}$=2kπ+$\frac{π}{2}$,即x的取值集合为{x|x=kπ+$\frac{5π}{12}$,k∈Z}时,f(x)的最大值为1+$\frac{\sqrt{3}}{2}$,
(2)由已知,因为$sin(2A-\frac{π}{3})=\frac{{\sqrt{3}}}{2}$,
又$0<A<\frac{π}{2}$,解得$A=\frac{π}{3}$.
由$S=\frac{1}{2}bcsinA=6\sqrt{3}$,得bc=24,
结合b-c=1及余弦定理知:a2=b2+c2-2bccosA=b2+c2-bc=(b-c)2+bc=1+24=25,
可得:a=5.

点评 本题主要考查了三角函数恒等变换的应用,周期公式,正弦函数的性质,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.角α的终边经过点(3,4),则$\frac{sinα+cosα}{sinα-cosα}$=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图(1),在三角形PCD中,AB为其中位线,且2BD=PC,若沿AB将三角形PAB折起,使∠PAD=θ,构成四棱锥P-ABCD,且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2.

(1)求证:平面BEF⊥平面PAB;
(2)当异面直线BF与PA所成的角为$\frac{π}{3}$时,求折起的角度θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=$\frac{1+i}{{\sqrt{3}-i}}$,则|z|=(  )
A.$\sqrt{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在正方体ABCD-A1B1C1D1中,已知点P为平面AA1D1D中的一个动点,且点P满足:直线PC1与平面AA1D1D所成的角的大小等于平面PBC与平面AA1D1D所成锐二面角的大小,则点P的轨迹为(  )
A.直线B.椭圆C.D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{{\begin{array}{l}{{3^{-x}}(x≤0)}\\{\sqrt{x}(x>0)}\end{array}}\right.$,若函数$g(x)=f(x)-\frac{1}{2}x-b$有且仅有两个零点,则实数b的取值范围是(  )
A.0<b<1B.0<b≤1C.$0<b<\frac{1}{2}$D.$\frac{1}{2}<b<1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ是参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A,B,C,D的极坐标分别为(2,$\frac{π}{6}$)、(2,$\frac{5π}{6}$)、(2,$\frac{7π}{6}$)、(2,$\frac{11π}{6}$)
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为C上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=ax(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为12,则实数a的值为(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩阵$A=[{\begin{array}{l}1&a\\ 2&1\end{array}}]$的一个特征值λ=3所对应的一个特征向量$\overrightarrow e=[{\begin{array}{l}1\\ 1\end{array}}]$,求矩阵A的逆矩阵A-1

查看答案和解析>>

同步练习册答案