精英家教网 > 高中数学 > 题目详情
16.已知焦点在x轴上的椭圆的离心率为$\frac{1}{2}$,且它的长轴长等于4,则椭圆的标准方程是(  )
A.$\frac{x^2}{4}+\frac{y^2}{3}$=1B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{16}+\frac{y^2}{4}=1$

分析 由题意设出椭圆方程并求得a值,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求.

解答 解:由题意可设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0).
且2a=4,∴a=2,又$e=\frac{c}{a}=\frac{1}{2}$,
∴c=1,则b2=a2-c2=3.
∴椭圆的标准方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
故选:A.

点评 本题考查椭圆的简单性质,考查了椭圆方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知全集U为实数集,集合A={x|x2-2x-3<0},B={x|x<1},则A∩B为(  )
A.{x|1≤x<3}B.{x|x<3}C.{x|x≤-1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(9))的值为(  )
A.-$\frac{1}{9}$B.-9C.$\frac{1}{9}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,BC=1,AB=$\sqrt{3}$,AC=$\sqrt{6}$,点P是△ABC的外接圆上的一个动点,则$\overrightarrow{BP}$•$\overrightarrow{BC}$的最大值是(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{m}$=(a,-1),$\overrightarrow{n}$=(b-1,1),且$\overrightarrow{m}$∥$\overrightarrow{n}$,若b>0,则$\frac{1}{|a|}$+$\frac{4|a|}{b}$的最小值是(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:方程$\frac{x^2}{a+6}+\frac{y^2}{a-7}=1$表示焦点在坐标轴上的双曲线,命题q:?x∈R,x2-4x+a<0.若“p或?q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个圆柱的正视图是面积为6的矩形,它的侧面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数$z=\frac{{2{i^3}}}{i-1}$(i为虚数单位),z则的虚部为(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=(mx+n)lnx.若曲线y=f(x)在点P(e,f(e))处的切线方程为y=2x-e(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a,b∈R+,试比较$\frac{f(a)+f(b)}{2}$与$f(\frac{a+b}{2})$的大小,并予以证明.

查看答案和解析>>

同步练习册答案